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Spatio-Temporal Dynamic Graph Relation
Learning for Urban Metro Flow Prediction
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Abstract—Urban metro flow prediction is of great value for metro operation scheduling, passenger flow management and personal
travel planning. However, the problem is challenging. First, different metro stations, e.g. transfer stations and non-transfer stations have
unique traffic patterns. Second, it is difficult to model complex spatio-temporal dynamic relation of metro stations. To address these
challenges, we develop a spatio-temporal dynamic graph relational learning model (STDGRL) to predict urban metro station flow. First,
we propose a spatio-temporal node embedding representation module to capture the traffic patterns of different stations. Second, we
employ a dynamic graph relationship learning module to learn dynamic spatial relationships between metro stations without a
predefined graph adjacency matrix. Finally, we provide a transformer-based long-term relationship prediction module for long-term
metro flow prediction. Extensive experiments are conducted based on metro data in four cities, China, with experimental results
demonstrating the advantages of our method compared over 14 baselines for urban metro flow prediction.

Index Terms—Spatio-temporal Data, Urban Flow Prediction, Graph Neural Networks
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1 INTRODUCTION

A S an important part of urban public transportation, ur-
ban metro occupies a large proportion of urban traffic.

Especially for large cities, accurate prediction of urban metro
passenger flow is critical to metro operation scheduling [1],
passenger flow management [2], and personal travel plan-
ning [3]. Urban metro networks are dynamic graphs which
have rich spatial and temporal characteristics. Figure 1(a)
shows the change of passenger outflow for three different
metro stations in Chongqing over the time frame of one
day. We can observe that the passenger outflow of station
1 has a small peak between 7:00 and 9:00 in the morning,
and there is also a small evening peak period between 17:00
and 19:00. While station 2 also has a relatively small peak
in the morning, there is no obvious evening peak, and the
overall one-day passenger outflow is smaller than that of
station 1. Station 3 has a large peak in passenger outflow
in the morning, and then the passenger outflow after 9:00
decreases significantly. Still, the overall passenger flow of
station 3 is much larger than those of stations 1 and 2. We
can see that these stations have their own different station
traffic patterns, not just a simple, fixed spatial connection
relationship between stations. Different metro stations are
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connected and affected each other. This spatial dependency
relationship changes dynamically along with time and loca-
tion as shown in Figure 1(b).

In order to achieve good predictions of passenger flow
in metro stations, some research works have been tried and
studied [4], [5], [6], [7]. Most of these methods model the
flow change trend of metro stations according to inflow
and outflow passenger data, metro network topology map,
weather, and other external factors. They often use CNN
and GNN-based methods to capture spatial dependencies in
metro flow data [8], apply RNN-based and Attention-based
methods to model the temporal dependencies of metro traf-
fic data [9], and some also take external factors into account
[6]. Although these studies have made positive progress,
most of them only use a single metro traffic data set or need
to predefine the adjacency graph between stations. Others
treat different stations in the metro network as the same
kind of node. Overall, the generalization performance of
these models is insufficient.

In summary, the urban metro flow prediction task faces
three major challenges:

1) Modeling unique traffic patterns at different sta-
tions: Previous research [8], [10], [11] treated metro stations
as equal nodes or divided metro stations into transfer sta-
tions and non-transfer stations. The parameters are shared
globally or locally when using a static adjacency matrix, and
the computational cost is relatively small. Still, it ignores the
traffic flow patterns differences between different stations.
However, we find that although different stations are di-
rectly connected or are all transfer stations, they have unique
traffic change patterns, as shown in Figure 1(a). Therefore, it
is necessary to model the traffic patterns of different stations
separately.

2) Dynamic spatial dependency relations between sta-
tions: The spatial dependencies between stations are treated
static in existing work [6], [8], [12]. Some of them express
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Fig. 1: Spatio-temporal dynamic graph relation. (a) The
metro outflow of station 1 has a morning peak and evening
peak. As a contrast, station 2 only has a morning peak and
station 3 has an extremely sharp morning peak. It shows
unique traffic patterns at three different metro stations. (b)
These stations are connected to each other, the passenger
inflow and outflow of metro stations change over time, there
are dynamic spatio-temporal dependency relations between
stations.

their spatial dependencies directly with the existence or
lack of connections between stations. The distance between
them and the similarity of traffic flow is regarded as spatial
dependencies. But these static methods ignore the fact that
the passenger inflow and outflow of a station are not only
affected by its upstream, downstream, and nearby stations,
but also depend on time, weather, and other external factors.
Therefore, it’s a challenge to capture the dynamic spatial
dependency relation between stations.

3) Long-term temporal prediction: To better support the
downstream applications, it is necessary to carry out a long-
term metro station flow prediction. Existing research [6] on
short-term metro station passenger flow prediction has been
carried out. Still, there is a lack of relevant research on
long-term accurate metro station flow prediction because

of the difficulty of modeling long-term time series. As the
prediction period becomes longer, the influence of uncer-
tain factors will reduce the prediction accuracy, and the
dynamic variance of the metro flow itself also increases the
uncertainty. In general, compared with short-term predic-
tion, long-term prediction is more difficult but has greater
practical application value.

In order to cope with the above challenges, we propose
a spatio-temporal dynamic graph relation learning method
for metro flow prediction, which can model different traf-
fic patterns at different stations and capture the dynamic
spatial dependency relation between stations. At the same
time, it can carry out long-term prediction, which can better
support traffic management for metro operators and travel
decisions for urban residents. The contributions of this pa-
per include four aspects, as follows:

• A node-adaptive parameter learning module is
adopted to learn different station-specific spatiotem-
poral embedding representations to capture the flow
patterns of different stations.

• A dynamic graph relation learning module is pro-
posed to learn the dynamic spatial dependencies
between stations, which does not require a prede-
fined spatial relationship of station connections, but
directly learns the dynamic spatial dependencies be-
tween stations from spatiotemporal graph data.

• A long-term temporal relation prediction module
based on Transformer is used to predict the long-
term metro flow. The predicted results can offer a
useful reference for urban metro operation manage-
ment and personal travel planning.

• Experiments are conducted on 4 different cities’
metro datasets, including Beijing, Shanghai,
Chongqing, Hangzhou. Compared with the 14
baseline methods, the experimental results have
significantly improved prediction performance.

The remainder of this paper is organized as follows.
In Section 2, we present the related work about urban
flow prediction and graph neural networks. In Section 3,
we introduce some preliminary concepts and formalize the
metro flow prediction problem. In Section 4, we show the
overall framework of the proposed STDGRL model. The
experiment result, visualization and analysis are given in
Section 5. We conclude the work in Section 6.

2 RELATED WORK

2.1 Urban Flow Prediction
Urban flow prediction is important for traffic management
[13], land use [14], public safety [15], etc. The urban flow
prediction can be regarded as a spatio-temporal predic-
tion task, which is a kind of research problem that uses
spatio-temporal machine learning methods to learn spatio-
temporal correlations from spatio-temporal datasets [16].
At present, a large number of researchers have conducted
studies on the task of urban flow prediction. Xie et al.
[17] divided the urban flow prediction task into crowd
flow prediction, traffic flow prediction, and public transport
flow prediction and reviewed the classical deep learning
methods. With the city’s continuous development, more and
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more people are pouring into the city, and the metro and
other public transportations occupy the main body of the
urban traffic flow. Accurate metro flow prediction is of great
value for urban traffic management, urban public safety, and
residents’ daily travel. In the early work, researchers used
statistical-based methods for urban flow prediction, such as
ARIMA (Autoregressive Integrated Moving Average) [18],
SARIMA (Seasonal Auto-Regressive Integrated Moving Av-
erage) [19] and other methods. Later, some classic machine
learning methods were used for urban flow prediction, such
as SVR(Support Vector Regression) [20], K-NN(K-nearest
neighbor) [21] and other methods. But these methods of-
ten ignored spatiotemporal correlations are hinted in spa-
tiotemporal data, which are crucial for accurate urban flow
prediction.

In recent years, with the development of deep learning,
deep learning methods have been used in the research field
of urban flow prediction. The representative works mainly
include the time series method represented by RNN [22],
the spatial relation method represented by CNN [23], and a
spatiotemporal relationship method combining the two [9],
[24], [25]. Based on RNN and its variant series, these meth-
ods focus on capturing temporal dependencies in spatio-
temporal data, such as closeness, periodicity, trend, etc [15].
These CNN-based methods mainly capture the spatial de-
pendencies in spatiotemporal data, such as spatial distance,
spatial hierarchy, and regional functional similarity [26]. In
addition, such methods combining RNN and CNN consider
both temporal and spatial dependencies and propose hybrid
models to model the spatiotemporal characteristics in traffic
data [27].

Later, due to the rise and continuous development of the
graph neural network [28], [29], [30] and the graph structure
of the road network and rail transit network, more and more
researchers have used GNN-based methods for urban flow
prediction tasks [31], [32], [33] and achieved good results.
For more related papers, you can refer to these overview
papers [34], [35], [36], [37].

2.2 Graph Neural Networks

Graph neural networks can model graph data in non-
Euclidean space, especially the dependencies between
nodes. Graph neural networks research is developing
rapidly, and many research works have emerged [6], [38],
[39], [40]. Wu et al. [38] divided graph neural network meth-
ods into graph convolutional networks, graph attention
networks, graph autoencoders, graph generation networks,
and graph spatiotemporal networks. Applying the graph
neural network to urban flow prediction, traffic forecasting,
and other fields is natural. Since the road network and rail
transit network can be regarded as the road segments and
stations in the graph, the graph spatiotemporal network
can be used to capture the relationship between the nodes.
Based on RNN and CNN, the spatial and temporal depen-
dencies in the spatio-temporal graph can be learned, making
more accurate traffic state predictions. Among them, two
representative works use GCN and RNN [32], GCN and
CNN [33] methods to model the spatiotemporal dependen-
cies of spatiotemporal graph data, which are applied to
traffic prediction tasks.

However, the previous methods using GNNs for spa-
tiotemporal prediction tasks mostly use a predefined graph
structure or a single fixed graph adjacency matrix [41] or
multiple graph adjacency matrices for fusion [12]. This type
of method regards the spatial dependence in spatiotemporal
data as static and invariant. However, in reality, the spa-
tiotemporal relationship in spatio-temporal data is dynamic.
It is necessary to model the dynamic graph relationship
in spatio-temporal data and capture the spatio-temporal
dynamics. Compared with previous methods, our method
mainly learns the dynamic graph relationship in the spa-
tiotemporal data to obtain more accurate traffic prediction
results.

3 PROBLEM FORMULATION

This paper proposes a spatio-temporal dynamic graph re-
lation learning model for flow prediction in metro stations.
Our model does not need a predetermined metro network
topology map, and can directly learn spatial dependencies
from metro flow data, which has broad applicability to
metro flow prediction tasks in different cities.

Before introducing our model in detail, we first define
and represent the metro flow prediction task and related
conceptual notations. At station i, the metro flow of time
period t can be expressed as Xi,t ∈ R2, which includes
the passenger inflow and outflow. The flow information
of the entire metro network can be expressed as X :,t =
(X1,t,X2,t, ...,XN,t) ∈ RN×2, where N means the number
of metro stations. The metro flow in this paper contains two
perspectives, which are passenger inflow and outflow in
metro stations. The metro station flow prediction task can
be defined as, given the historical flow sequence, predicting
the flow sequence for a period of time in the future.

X :,t+1,X :,t+2, . . . ,X :,t+m = Fθ (X :,t,X :,t−1, . . . ,X :,t−T+1) ,
(1)

where θ means all the learnable parameters in the STDGRL
model, T is the length of the input flow sequence, and m
means the length of the predicted flow sequence.

4 METHODOLOGY

The overall architecture of the model is shown in Figure 2. It
contains a node-specific spatiotemporal embedding module,
a dynamic spatial relationship learning module, a long-term
temporal prediction module and a spatio-temporal fusion
module. First, we propose a node-specific spatio-temporal
embedding module to embed and represent the stations of
the metro spatio-temporal graph. Then we adopt a dynamic
spatial relationship learning module to learn the spatial
dependencies directly from the metro flow data without
relying on a specific metro network topology. Finally, a
Transformer-based long-time-series dependency prediction
module is used to predict the metro flow in a long-term
sequence, making its prediction more suitable for actual
metro dispatch management and daily operation scenarios.
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Fig. 2: Spatio-Temporal Dynamic Graph Relation Learning (STDGRL) model. NAPL, DSRL and LTTP are the abbreviation
of node-specific adaptive parameter learning, dynamic spatial relationship learning and long-term temporal prediction
respectively.

4.1 Node-specific Spatio-Temporal Embedding
The node-specific adaptive parameter learning module
(NAPL) is adopted. The classic graph convolution operation
[30] is calculated by the following formula:

Z =
(
IN +D− 1

2AD− 1
2

)
XΘ + b, (2)

where A ∈ RN×N is the adjacency matrix of the graph, D
is the degree matrix, IN is the identity matrix, X ∈ RN×C

is the input of the graph convolutional network layer,
Z ∈ RN×F is the output of the graph convolutional net-
work layer, C and F both are the embedding dimension
respectively. Θ ∈ RC×F and b ∈ RF represent learnable
weights and biases, respectively.

In this method, all nodes on the graph share parameters
such as weights and biases. According to [42], different
nodes have different traffic flow patterns, as shown in
Figure 1(a), because they have different attributes, such as
POI distribution around the nodes, various weather condi-
tions, and different flow patterns. For more accurate traffic
prediction, it is necessary to learn different traffic patterns
for different nodes, that is, to learn node-specific patterns
by using different learnable parameters rather than globally
shared parameters.

In order to learn node-specific patterns, a node-specific
adaptive parameter learning module is proposed, which
learns the node embedding matrix EG ∈ RN×d and weight
pool WG ∈ Rd×C×F . The Θ in Formula 2 can be calcu-
lated by the node embedding matrix and the weight pool,
Θ = EG ·WG . Such a computation can be interpreted as
learning node-specific patterns from all station time-series
patterns. The bias b can also be calculated in the same way.
The parameter module of the final node adaptation can be
expressed by Formula 3.

Z =
(
IN +D− 1

2AD− 1
2

)
XEGWG +EGbG . (3)

4.2 Dynamic Spatial Relation Learning
In a metro network, the connection relationship between
stations is fixed and static. However, static connection re-

lationship cannot reflect the dynamic spatial dependence
between stations. Moreover, the passenger’ inflow and out-
flow change over time, so it is necessary to learn this dy-
namic spatial dependency from spatiotemporal data. There-
fore, a dynamic spatial relationship learning module (DSRL)
is proposed, which is a representation model with adaptive
and spatial structure awareness. Inspired by [42], we first
randomly initialize a learnable node embedding dictionary
EA ∈ RN×de for all nodes. During the model training
process, EA will be dynamically updated. Each row of EA

represents the embedding representation of the node, and
de represents the dimension of node embedding. Then, the
spatial dependency between nodes is calculated by multi-
plying EA and ET

A. Finally, we can get the generated graph
Laplacian matrix as shown in the formula below.

D− 1
2AD− 1

2 = softmax(ReLU(EA ·ET
A)), (4)

where the softmax function is used to normalize the
learned adaptive matrix. The calculation formula of GCN
is as follows:

Z = (IN + softmax(ReLU(EA ·ET
A)))XΘ + b. (5)

For the nodes at time step t, the operation of a GRU
module can be expressed as follows:

Ã = softmax
(
ReLU

(
EAET

A

))
,

zt = σz
(
Ã [X :,t,ht−1]EW z +Ebz) ,

rt = σr
(
Ã [X :,t,ht−1]EW r +Ebr) ,

ĥt = tanh
(
Ã [X :,t, r � ht−1]EW ĥ +Ebĥ) ,

ht ≡ zt � ht−1 + (1− zt)� ĥt,

(6)

where [·] means the concate operation, � denotes the
element-wise multiplication, E, W z , W r , W ĥ, bz , br , bĥ
are the parameters to be learned, X:,t and ht are input
and output at time step t. Finally, the output YS of the
component is obtained through a fully connected network.
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4.3 Long-Term Temporal Prediction

To capture the long-term global dependencies of metro flow
sequences, we propose a long-term temporal prediction
module (LTTP). A Transformer-based [43] long-term tempo-
ral prediction method is adopted for long-term metro flow
prediction. This layer includes a multi-head self-attention
layer, a feed-forward neural network layer, and a layer
normalization layer. First, the multi-head self-attention layer
is introduced. The attention calculation formula is shown in
Formula 7. The dot product between all keys and the given
queries is calculated, divided by

√
dk, and then multiplied

by V . Finally, a softmax function is used to calculate the
attention score of each position. These attention scores will
be used as weights to aggregate information from different
parts. Long-term temporal dependencies are computed in
high-dimensional latent subspaces.

Attention (Q,K,V ) = softmax

(
QKT

√
dk

)
V , (7)

where Q, K ∈ RT×dk and V ∈ RT×dv mean the query
subspace, key subspace and value subspace of all nodes, re-
spectively. A position embedding is added to each position
to enable the LTTP layer to perceive the relative position in
the entire traffic sequence. The formula of position coding
et is shown below:

et =

sin
(
t/100002i/dmodel

)
, if t = 0, 2, 4 . . .

cos
(
t/100002i/dmodel

)
, otherwise.

(8)

Then, the output calculated by the multi-head self-
attention layer is passed to the feedforward neural network
layer. Finally, the output YT of the LTTP network is obtained
through the residual connection [44] and layer normaliza-
tion.

4.4 Spatio-temporal Fusion

In order to effectively utilize the captured temporal and spa-
tial dependencies, we adopt spatio-temporal fusion module
to fuse the learned temporal and spatial dependencies. As
shown in the following formula:

X :,t+1,X :,t+2, . . . ,X :,t+m = WS �YS +WT �YT , (9)

where YS is the output of spatial relation learning module,
YT is the output of temporal relation learning module, �
is the Hadamard product, WS and WT are the learnable
weight parameters.

5 EXPERIMENTS

In this section, we first introduce the experimental setup,
including the description of the dataset, experimental en-
vironment, implementation details, and evaluation metrics.
Next, we compare our proposed method STDGRL with
14 representative methods. Finally, we conduct extensive
experiments and analyze the effectiveness of our model and
each module.

5.1 Experiments Settings

1) Dataset description: In this paper, we use 4 metro card
swiping datasets: Beijing Metro dataset [6], Shanghai Metro
dataset [12], Chongqing Metro dataset, and Hangzhou
Metro dataset [12].

BJMetro: This dataset collects the data of Beijing Metro
for five consecutive weeks from February 29 to April 3, 2016.
It contains 17 metro lines and 276 metro stations, excluding
the Airport Express and its stations.

SHMetro: This dataset uses the Shanghai Metro dataset
published in [12], and the format of the dataset is consistent
with the original paper. The time slice size is 15 minutes,
and the time span is from July 1 to September 30, 2016. The
Shanghai Metro dataset contains a total of 288 stations.

CQMetro: This dataset is private and obtained by pre-
processing the Chongqing metro swiping card data. We di-
vide the data into 15-minute time slices to get the passenger
inflow and outflow of the stations within the time slice. The
time span is from March 1 to March 31, 2019. The Chongqing
Metro dataset contains a total of 170 stations.

HZMetro: This dataset also uses the Hangzhou Metro
dataset published in [12]. The format of the dataset is
consistent with the original paper. The time slice size is
15 minutes, and it contains 80 stations. The time frame is
January 2019, with a total of 25 days.

2) Implementation details: We use the deep learning
framework PyTorch [45] to implement the model STDGRL
in this paper and the deep learning models in the com-
parison methods. The experimental equipment uses a GPU
card with an NVIDIA Titan V. In the Chongqing Metro data
set, the card swiping data between 23:00-06:00 every day is
directly deleted. Since this period is not within the operating
time range of the metro, no passenger enter or leave the
stations. We normalized the dataset in the same way as
used in AGCRN [42]. The training set, validation set, and
test set of the four datasets are divided in a chronological
order according to the ratio of 7:1:2. The batch size is set to
64. The Adam [46] optimizer is used to optimize our model
for a maximum of 200 epochs. And we use an early stop
strategy with the patience of 50. The learning rate is 0.01.
We take the data of the 4 historical time steps as input and
the data of the next 4 time steps as output. Although our
proposed method does not require a predefined adjacency
matrix graph, we use the predefined adjacency matrix graph
method as a contrasting method.

3) Evaluation metrics: We use three metrics commonly
used in spatiotemporal prediction tasks, Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and Mean
Absolute Percentage Error (MAPE), to evaluate the perfor-
mance of the method. The formulae are as follows:

• Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|ŷi − yi| . (10)

• Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2. (11)
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• Mean Absolute Percentage Error (MAPE)

MAPE =
100%

n

n∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ , (12)

where n is the number of test samples, ŷi and yi mean
the predicted passenger flow and the actual passenger flow,
respectively. ŷi and yi are transformed into the scale of the
original value by inverse Z-score normalization.

5.1.1 Baselines
In this section, we compare the proposed STDGRL model
with 14 baseline models, as shown in Table 1. These models
can be divided into five categories, including (1) two tra-
ditional time series models, (2) two single deep learning
models, (3) eight graph spatiotemporal network models
for traffic prediction or multivariate time series forecasting
proposed in recent years, (4) one Transformer-based traffic
prediction model, and (5) one recently proposed graph
neural network model for metro passenger flow prediction.
These models are described in detail as follows:

• Historical Average (HA) [47]: This model obtains the
current traffic by averaging the historical traffic in the
same time slice. This method is calculated for a single
time series each time.

• Support Vector Regression (SVR) [48]: This machine
learning model serves as a classic baseline model for
a class of time series forecasting, using linear support
vector machines for time series forecasting tasks. It is
often used as a comparison method in time series
forecasting tasks.

• Long Short-Term Memory (LSTM) [49]: This is a
classic deep learning method for time series that
captures the temporal correlations of spatiotemporal
sequences.

• Gated Recurrent Unit (GRU) [50]: As a variant
model of RNN, it can also capture the time-series
correlation in the spatiotemporal sequence, but it
cannot learn the spatial correlation. It is a time series
forecasting method based on deep learning.

• T-GCN [41]: It is a traffic prediction model based
on graph convolutional network, which can capture
spatiotemporal dependencies in spatiotemporal se-
quence data. It combines a graph convolutional neu-
ral network and a gated recurrent neural network.

• DCRNN [32]: To capture the complex spatial depen-
dencies and nonlinear temporal dynamics of road
networks, a diffusion convolutional recurrent neural
network is proposed for traffic prediction. It is one
of the classic methods for spatiotemporal sequence
prediction in graph neural network-based methods.

• STGCN [33]: This is a spatiotemporal graph convo-
lutional network based on convolutional structure,
and it is used for the traffic prediction task. It has a
faster training speed and fewer parameters.

• AGCRN [42]: This method does not require a prede-
fined spatial graph and is an adaptive graph con-
volutional network that can learn spatiotemporal
dependencies from spatiotemporal data.

• Graph WaveNet [51]: It uses a node embedding
method to learn the adaptive spatial graph structure,

a spatiotemporal graph network method combining
graph convolution and dilated causal convolution is
proposed.

• STTN [52]: It’s a Transformer-base spatio-temporal
model for traffic prediction.

• Multi-STGCnet [8]: It is a combined model con-
taining graph convolutional network and LSTM for
metro passenger flow prediction.

• GMAN [53]: This is a graph multi-attention encoder-
decoder model for long-term traffic prediction.

• MTGNN [54]: It’s a graph neural network frame-
work for multivariate time series forecasting, which
can capture the spatial and temporal dependencies
in spatio-temporal data.

• ASTGCN [55]: It is an attention based spatial tem-
poral graph convolutional network for traffic flow
forecasting, the model contains spatio-temporal at-
tention mechanism and spatio-temporal convolution
modules.

• STDGRL (ours): The proposed spatiotemporal pre-
diction network based on spatiotemporal dynamic
graph relationships for traffic forecasting in metro
stations. Compared with the previous methods, our
method does not require a predefined spatial graph
on the one hand and can perform long-term metro
flow prediction on the other hand.

TABLE 1: Comparison of different models w.r.t. their mod-
ule components.

Model Temporal Relation Spatial Relation Node Embedding ST Fusion

HA X

SVR X

LSTM X

GRU X

T-GCN X X

DCRNN X X

STGCN X X

AGCRN X X X

Graph WaveNet X X X

STTN X X X

Multi-STGCnet X X X

GMAN X X X X

MTGNN X X X X

ASTGCN X X X X

STDGRL (ours) X X X X

TABLE 2: The total training time and training time per epoch
on the SHMetro dataset.

Model Total Training Time (s) Training Time (s) Per Epoch

STDGRL 658.2 3.291

ASTGCN 995.4 9.954

MTGNN 1212.6 12.126

GMAN 8986.4 112.33

5.2 Overall Performance
Table 3 to Table 6 show the overall prediction performance
of our method and 14 comparative methods on the Beijing,
Shanghai, Chongqing, and Hangzhou Metro datasets. In
the prediction interval of the next hour, three evaluation
indicators MAE, RMSE, and MAPE are used for evaluation.
We can see that the results of the classical machine learning-
based time series forecasting method are worse than the
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TABLE 3: Performance comparison of baseline methods on BJMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 95.7779 207.2597 0.7318 95.7779 207.2597 0.7318 95.7779 207.2597 0.7318 95.7779 207.2597 0.7318

SVR 133.3139 313.8002 2.1439 135.0974 317.4431 2.1201 138.4471 323.1964 2.1260 143.1395 330.3005 2.1365

LSTM 99.2410 243.2237 1.9165 102.5640 245.3053 2.0540 107.7217 248.8519 2.5461 115.4902 257.5999 3.8183

GRU 96.3814 237.3694 1.7907 96.5315 238.4541 1.8164 98.0139 240.9763 2.0611 101.0722 245.6744 3.3837

T-GCN 97.1880 157.4604 1.8642 110.1468 183.8415 2.2288 126.7785 217.8278 3.1665 141.9155 250.9208 4.6435

DCRNN 32.4452 67.2273 0.2861 38.5430 81.8017 0.3725 47.0715 103.1199 0.5501 55.3968 125.2164 0.8658

STGCN 32.1576 62.6209 0.3366 37.8507 71.9395 0.4629 44.9624 84.5158 0.7980 50.8894 96.7363 1.5807

AGCRN 25.1688 47.8686 0.2397 25.3167 47.2164 0.2669 26.2948 48.9524 0.3599 26.9285 50.8812 0.5362

STTN 35.6133 78.4165 0.3647 32.7436 63.3843 0.3284 33.2021 62.4016 0.4469 35.8133 68.6054 0.9178

Graphwavenet 30.0961 54.7262 0.3078 32.2696 59.0870 0.3418 34.8733 64.4616 0.4582 37.7106 70.6784 0.8562

Multi-STGCnet 74.9387 205.3702 0.7335 74.8064 205.1637 0.7601 75.0618 205.4398 0.9342 75.5030 206.6044 1.2342

GMAN 24.2658 40.1035 0.2891 23.7505 40.0677 0.2688 24.0354 40.8922 0.2721 24.7694 42.2956 0.3070

MTGNN 25.3547 45.7971 0.2332 221.2294 380.5587 6.9053 222.4127 381.2859 7.8694 222.4692 382.7515 8.8622

ASTGCN 166.2092 286.0567 3.4082 168.5437 286.0056 4.4581 180.6200 298.1561 9.0007 182.0194 304.0857 17.9494

STDGRL(ours) 21.8468 41.2336 0.2015 22.3419 42.3507 0.2167 22.8053 43.1799 0.2908 22.8942 43.3726 0.4393

TABLE 4: Performance comparison of baseline methods on SHMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 76.9445 169.6002 0.9358 76.9445 169.6002 0.9358 76.9445 169.6002 0.9358 76.9445 169.6002 0.9358

SVR 89.4518 230.2805 1.2532 91.0132 233.0358 1.2225 94.6976 239.6837 1.2640 100.0826 249.1291 1.3695

LSTM 48.1613 108.2152 0.6381 53.4732 125.0903 0.6604 57.8482 136.6724 0.6826 64.2742 156.8241 0.7489

GRU 31.2748 65.8625 0.3176 31.6766 67.4298 0.3108 32.5833 71.2581 0.3151 33.7280 74.3567 0.3235

T-GCN 74.6434 124.6865 1.3138 83.4037 147.2772 1.3331 95.1702 176.0193 1.5574 106.0074 202.7877 1.8807

DCRNN 27.9394 54.2426 0.2633 31.9161 63.9539 0.2937 37.2232 79.1991 0.3157 42.0734 93.8128 0.3435

STGCN 28.2697 52.2552 0.3136 31.8696 59.3756 0.3527 36.9222 70.1263 0.4005 42.0439 81.2147 0.4431

AGCRN 24.0087 47.1056 0.2316 25.4590 50.9641 0.2470 27.0434 55.5671 0.2647 28.4134 59.6148 0.2696

STTN 29.0291 56.2013 0.2661 29.2963 57.8522 0.2578 30.2127 60.4864 0.2629 30.9729 60.7344 0.2669

Graphwavenet 26.2299 50.3182 0.2448 28.1380 54.7953 0.2689 30.1868 59.8046 0.2868 32.5230 65.6138 0.3265

Multi-STGCnet 49.6580 128.6207 0.3332 49.9009 128.9203 0.3338 50.4986 129.8213 0.3375 51.6335 131.7302 0.3415

GMAN 25.7015 48.1071 0.3227 25.6775 48.9678 0.3075 26.1142 50.0823 0.3055 26.8159 51.3577 0.3183

MTGNN 24.4736 46.1361 0.2337 25.6309 50.1118 0.2306 27.8870 55.5775 0.2493 181.4216 338.4027 4.6655

ASTGCN 48.1161 87.3258 0.7461 50.4885 91.0344 0.7816 53.7781 98.7321 0.8465 60.4863 111.5752 0.9864

STDGRL(ours) 23.7239 46.8692 0.2143 24.3754 49.2925 0.2166 25.4230 52.9028 0.2248 26.5829 57.3964 0.2341

deep learning-based methods such as LSTM, GRU methods,
indicating that the modeling of no-linear data dependencies
in the spatiotemporal data is crucial when making traffic
predictions. In addition, we also find that the performance
of the traffic prediction models based on graph neural
network proposed in recent years are better than LSTM
and GRU methods. The reason is that they can capture the
spatio-temporal dependence in spatio-temporal graph data
better than deep learning models.

On the SHMetro dataset, our method STDGRL com-
pletely surpasses the most related three methods GMAN,
MTGNN, and ASTGCN in terms of MAE and MAPE. More-
over, we also recorded the training time of the three models
and ours. We find that the total training time of our method
is 658.2s, which is smaller than the three methods (995.4s,
1212.6s, and 8986.4s, respectively); and the average training
time per epoch of our method is also smaller. So it is much

faster to train our model. Detailed time are shown in Table
2. On the CQMetro dataset, the MAPE value of our method
outperforms GMAN, MTGNN, and ASTGCN for the next 15
minutes prediction. We also beat MTGNN and ASTGCN for
the next 30 minutes, 45 minutes, and 60 minutes prediction.
As for BJMetro and HZMetro datasets, the improvements
of our method are relatively smaller or even behind others,
but our model still performs very competitively. In general,
it is not our goal to develop a ”all-win” model that can
beat all other methods on all datasets (neither do other
methods). Rather, we see the pros & cons of each method,
which has its best use cases in different settings. Given
there are significant differences between metro networks
and traffic patterns in different cities, our method, overall,
has attained an excellent prediction performance and fast
training speed. Figure 3 shows the inflow and outflow
prediction performance at one day in the SHMetro dataset.
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TABLE 5: Performance comparison of baseline methods on CQMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 56.6874 120.7926 0.6848 56.6874 120.7926 0.6848 56.6874 120.7926 0.6848 56.6874 120.7926 0.6848

SVR 60.0164 143.7840 1.2217 61.4924 145.5862 1.2169 64.1068 149.3066 1.2537 67.5121 154.3567 1.3186

LSTM 15.1076 29.2919 0.8762 14.9974 28.5219 0.9348 15.4466 29.1093 1.0224 15.8549 29.6383 1.2524

GRU 14.5013 28.4447 0.8418 14.3555 27.7498 0.8976 14.5529 28.0491 0.9320 14.6878 28.1582 1.0298

T-GCN 20.1979 33.4217 1.3637 21.1046 34.6047 1.5492 23.0371 37.3405 1.8133 24.7309 40.4497 2.2657

DCRNN 15.3833 28.6454 0.8490 15.9655 29.1312 0.9072 17.1855 32.3489 0.9258 18.3593 35.7147 0.9949

STGCN 14.8434 26.5124 0.9370 15.6187 27.0655 1.0764 17.2265 29.9948 1.1908 18.8533 33.5860 1.3756

AGCRN 12.8426 23.2149 0.7358 13.0715 23.3458 0.8382 13.1600 23.3890 0.8348 13.4021 23.9076 0.9473

STTN 15.0992 27.9610 0.8255 14.9527 27.4131 0.8817 14.9681 26.8947 0.8621 15.6465 28.1648 1.0059

Graphwavenet 14.3624 25.8309 0.7889 14.5080 25.3435 0.8629 15.0909 26.5043 0.9230 15.7601 27.4222 1.1251

Multi-STGCnet 17.5820 36.3206 0.8167 17.4633 35.7817 0.8414 17.4939 35.9225 0.8347 17.5682 36.0584 0.8753

GMAN 12.2238 20.6095 0.7700 12.1508 20.7265 0.7563 12.2014 20.8506 0.7606 12.3904 21.1702 0.7761

MTGNN 12.5330 22.8966 0.6737 48.9423 77.2453 5.4796 49.1728 77.4534 5.7586 49.2734 77.6676 5.9827

ASTGCN 27.0901 40.6978 2.7829 28.7492 43.0850 3.4224 30.2731 46.1285 4.3312 31.7619 49.6536 5.6773

STDGRL(ours) 12.4831 23.0040 0.6421 12.3304 22.2855 0.6931 12.4552 22.6841 0.6900 12.5081 22.6701 0.7402

This dataset contains 288 stations more than other cities
stations like Beijing, Chongqing, and Hangzhou. It shows
that our proposed method performs well on a small number
of stations and also achieves good experimental results on a
large number of stations.
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Fig. 3: Inflow and outflow prediction visualization on the
SHMetro dataset.
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Fig. 4: Ablation study performance on the SHMetro dataset.

5.3 Ablation Study

We design a comprehensive ablation study to evaluate the
sub-modules of STDGRL. The baseline model of our abla-
tion study is GCGRU(T-GCN). This model is a classical traf-
fic forcasting method, which combines GCN and GRU for
capturing spatio-temporal dependencies. And we remove
the NAPL component from the STDGRL model to construct
STDGRL-NAPL. STDGRL-Transformer and STDGRL-GRU-
Transformer are the variants of our STDGRL respectively,
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TABLE 6: Performance comparison of baseline methods on HZMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

HA 71.8148 136.8056 0.6089 71.8148 136.8056 0.6089 71.8148 136.8056 0.6089 71.8148 136.8056 0.6089

SVR 84.8943 170.9875 1.7489 86.6150 173.4301 1.7447 89.1909 177.8438 1.7926 92.4263 183.5363 1.8661

LSTM 27.8706 50.2641 0.2675 28.1602 50.9464 0.2695 28.6903 51.7961 0.2732 29.4597 53.0576 0.3338

GRU 27.2826 48.6847 0.2523 27.7143 49.7454 0.2591 27.9942 50.6825 0.2614 28.6244 51.9195 0.3024

T-GCN 47.3206 69.9398 0.7409 51.0303 78.8955 0.7698 57.6238 91.5450 0.8880 65.0028 103.6740 1.2022

DCRNN 27.1144 49.5158 0.2280 31.2308 58.2314 0.2616 36.9020 70.9692 0.2855 42.7503 85.0528 0.3243

STGCN 28.2432 49.0484 0.3032 32.2267 56.2076 0.3548 37.7572 65.9376 0.4239 44.5799 77.8010 0.6117

AGCRN 23.6154 40.3462 0.2335 24.9422 43.1928 0.2647 25.9514 45.2841 0.2544 27.4004 46.7793 0.3134

STTN 28.1227 48.4724 0.2408 28.8057 49.0463 0.2753 28.6228 49.6005 0.2527 30.6277 52.4030 0.3537

Graphwavenet 25.1968 42.5834 0.2475 26.8730 45.1082 0.2803 29.4834 50.6676 0.2851 31.8565 56.0680 0.3253

Multi-STGCnet 44.4798 92.4560 0.3402 43.7682 92.1209 0.3368 43.8611 92.6602 0.3320 45.1232 94.0267 0.3799

GMAN 24.1543 39.3158 0.2343 24.6186 40.9025 0.2147 25.4196 42.7999 0.2143 26.1445 44.2000 0.2198

MTGNN 23.4571 40.8659 0.2049 150.0434 254.2380 3.6853 151.1580 254.7507 3.7172 152.7043 255.4239 4.2212

ASTGCN 96.5717 164.7744 1.9011 106.9131 175.6576 2.4147 110.6648 176.7765 2.7296 119.7329 187.5840 5.1943

STDGRL(ours) 23.2666 39.5458 0.2091 23.7721 40.4317 0.2141 24.8948 42.8774 0.2230 25.8339 45.1779 0.2570

TABLE 7: Analysis of ablation study on BJMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

GCGRU(T-GCN) 97.1880 157.4604 1.8642 110.1468 183.8415 2.2288 126.7785 217.8278 3.1665 141.9155 250.9208 4.6435

STDGRL-NAPL 26.2780 50.5006 0.2732 26.8332 50.8173 0.2990 28.3084 54.1128 0.4353 29.2143 56.2724 0.8812

STDGRL-Transformer 24.0629 44.3345 0.2393 24.6776 45.9240 0.2621 25.6731 48.4556 0.3524 26.0899 49.2110 0.6429

STDGRL-GRU-Transformer 23.9464 43.5017 0.2435 24.7591 45.8199 0.2759 25.9610 48.3604 0.4270 26.1943 48.8126 0.8663

TABLE 8: Analysis of ablation study on SHMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

GCGRU(T-GCN) 74.6434 124.6865 1.3138 83.4037 147.2772 1.3331 95.1702 176.0193 1.5574 106.0074 202.7877 1.8807

STDGRL-Transformer 24.6472 47.9299 0.2297 25.5251 50.9482 0.2358 26.7347 55.5103 0.2474 28.0522 61.0607 0.2565

STDGRL-GRU-Transformer 24.5923 47.8691 0.2191 25.4948 50.5436 0.2219 26.9211 54.8073 0.2336 28.3289 59.8896 0.2431

STDGRL-NAPL 24.5406 48.5099 0.2415 26.2928 53.3123 0.2548 27.7053 56.4908 0.2744 28.9449 59.2060 0.2860

which remove GRU module, GRU and Transformer module
from STDGRL model. The experimental result on the four
datasets are illustrated in Table 7 to Table 10.

We also show the ablation study performance on the
SHMetro dataset in Figure 4. We can observe that: 1) The
results in the Table show that the performance of GCGRU
(T-GCN) is not as good as that of the other three comparison
models, which may be due to its use of pre-defined graphs
and difficulty in capturing complex spatial dependencies
between nodes. 2) Compared with the STDGRL model, the
performance of the STDGR-NAPL model decreases by a
large proportion and is inferior to STDGR-Transformer and
STDGR-GRU-Transformer, indicating that it is necessary to
capture node-specific traffic patterns in the STDGRL model.
3) After Transformer and GRU modules are removed from
the STDGRL model, the performance is lower than that of
the STDGRL model, but better than that of the STDGRL-
NAPL model, indicating the necessity of using short-term
and long-term time series prediction modules in the STD-

GRL model. And it also demonstrates learning the specific
traffic patterns of nodes are more important than learning
temporal dependencies.

Overall, NAPL, DSRL and temporal learning modules
jointly boost the prediction performance of the STDGRL
model.

In summary, the experiment result demonstrates that
STDGRL can learn the spatial and temporal relation from
the metro spatio-temporal graph of different scales and
achieve promising prediction performance.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2023.3269771

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SOUTHWEST JIAOTONG UNIVERSITY. Downloaded on July 02,2023 at 03:17:46 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

TABLE 9: Analysis of ablation study on CQMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

GCGRU(T-GCN) 21.6926 35.1871 1.6189 23.2144 37.0886 1.9629 25.2631 41.2690 2.0706 27.0057 45.2837 2.4766

STDGRL-NAPL 13.1137 24.0971 0.7766 13.2085 23.5815 0.8447 13.5121 24.0103 0.9089 13.8917 24.6763 1.0789

STDGRL-Transformer 12.7363 23.1410 0.7404 12.7988 22.8028 0.8151 12.8622 22.7317 0.8111 12.9504 22.9711 0.8411

STDGRL-GRU-Transformer 12.8098 22.9895 0.7215 12.8164 22.8653 0.7724 12.9719 23.1255 0.7784 13.0303 23.2679 0.8636

TABLE 10: Analysis of ablation study on HZMetro dataset.

Model
15min 30min 45min 60min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

GCGRU(T-GCN) 47.3206 69.9398 0.7409 51.0303 78.8955 0.7698 57.6238 91.5450 0.8880 65.0028 103.6740 1.2022

STDGRL-GRU-Transformer 24.2082 40.6312 0.2244 25.2125 42.4502 0.2430 26.9467 45.9737 0.2595 29.4166 50.9448 0.3488

STDGRL-NAPL 23.9697 41.8146 0.2143 25.6265 44.7244 0.2400 27.0741 47.1538 0.2456 28.8701 49.7926 0.2871

STDGRL-Transformer 23.2615 39.7872 0.2178 24.0419 40.9422 0.2300 24.8309 42.4351 0.2415 26.0904 45.1816 0.2977

6 CONCLUSION

We proposed STDGRL, a novel spatio-temporal dynamic
graph relationship learning model, for predicting multi-
step passenger inflow and outflow in urban metro stations.
STDGRL can capture the traffic patterns of different metro
stations and the dynamic spatial dependencies between
metro stations. In addition, STDGRL can capture long-term
temporal relationship dependencies for long-term metro
flow prediction. We validated our model on real metro
datasets in 4 cities and experimental results achieved signifi-
cant performance improvements over 14 baselines. In future
work, we plan to research the influence of weather, events
and POI on the change of metro passenger flow, and the
detection and prediction of sudden large passenger flow in
metro stations.
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