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Abstract. Indoor temperature prediction is vital to predictive control
on district heating systems. Due to the data collection in practice, there
always exist residential areas with limited historical data. Transferring
the knowledge from residential areas with sufficient data is of great help
to address the data scarcity problem. However, it is still challenging
as the data distribution shifts among residential areas and shifts over
time. In this paper, we proposed a Multi-Memory enhanced Separation
Network (MMeSN) to predict indoor temperature for residential areas
with limited data. MMeSN is a parameter-based multi-source transfer
learning method, mainly consisting of two components: Source Knowl-
edge Memorization and Memory-enhenced Aggregation. Specifically, the
former component jointly decouples the domain-independent & domain-
specific information which separately memorize the specific historical
patterns for each source. The latter component memorizes the histor-
ical relationships between the target and multiple sources and further
aggregates the domain-specific & domain-independent information. We
conduct extensive experiments on a real-world dataset, and the results
demonstrate the advantages of our approach.

Keywords: Time series prediction · Transfer learning · Deep Learning
· Indoor Temperature · Urban Computing.

1 Introduction

District heating system is widely used during winter, supplying heat to resi-
dents for keeping the house warm. For monitoring the performance of heating
services, heat companies have deployed some temperature sensors in the house,

⋆ Xiuwen Yi is the corresponding author.
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generating real-time indoor temperature records. Accurate predicting future in-
door temperature is important for the predictive control of heating systems. By
controlling the heat supply intelligently, the indoor temperature can be sustained
at a comfortable level while reducing energy consumption.

However, considering the real-world data collection mechanism, over-fitting
problem often happened with traditional time-series prediction approaches when
there is not sufficient training data. For example, we can only get limited amount
of data for the residential area with newly-deployed temperature sensors due to
the cold-start problem.

One feasible idea is to transfer knowledge from a data-rich domain to the
data-poor domain[10]. Besides, multi-source transfer learning has become a hotspot
since more source information will contribute to a robust model. In this paper, we
propose a multi-memory enhanced separation network, named MMeSN, to pre-
dict residential indoor temperature with limited data. MMeSN is a multi-source
parameter-based transfer learning method, which mainly contains source knowl-
edge memorization and memory-enhanced aggregation. The former memorizes
useful knowledge of multiple sources, and the latter adapts the source knowledge
to the target domain. Our main contributions are summarized as follows:

– Multiple memory modules. We design multiple source memories to learn the
specific patterns of each source and design a target-source memory to capture
the correlations between target and source domains, which is robust for
historical knowledge memorization with better transfer generalization.

– Joint decomposition architecture. We design the joint decomposition architec-
ture for decoupling independent & specific information among all domains,
which helps distill individual historical knowledge and alleviates the com-
plexity of knowledge transfer.

– Real evaluation. We conduct extensive experiments on a real-world dataset
with four residential areas and the results demonstrate the advantages of our
approach over several state-of-the-art baselines.

2 Overview

2.1 Problem Definition

Formulation of prediction task. For a residential area, we specify xi =
(x1

i , x
2
i , ..., x

m
i ) ∈ Rm as m different sensor readings at time interval i, including

indoor temperature, heating temperature, outdoor temperature, outdoor humidity,
wind speed, and wind direction. Besides, we specify yi as the indoor temperature.
The prediction task can be defined as predicting the next indoor temperature
yL+1, given the historical observations X = {xi|i = 1, ..., L}.

Formulation of transferring task. Given n source residential areas {X s|s =
1, 2, ..., n} with sufficient historical data and one target residential area X t with
limited data. The transferring task can be defined as predicting the next in-
door temperature of the target residential area ytLt+1, where Lt is the length of
historical records of the target area.



Title Suppressed Due to Excessive Length 3

Fig. 1. Framework of our proposed MMeSN.

3 Methodology

Figure 1 illustrates the framework of MMeSN method, trained by two stages: 1)
source data pre-training, which jointly trains the network by multiple source data
to memorize the source knowledge; 2) target data fine-tuning, which re-trains the
network with only target data to transfer the knowledge from multiple sources.

In the pre-training stage, we feed all source data into the network sepa-
rately to jointly train the parameters. Firstly, the extractor learns the feature
representation from the original data. Then, in source knowledge memorization
component, we propose a joint decomposition architecture which contains a do-
main independent subnet and a domain specific subnet with multiple memories
to learn the shared and specific historical information. Finally, the concatenation
of these two outputs is fed into the predictor to forecast the next value.

In the fine-tuning stage, the network parameters are re-trained only using
the target data. To utilize the source knowledge, we freeze the parameters of the
extractor, domain independent subnet, and multiple source memories. Then, in
memory-enhanced aggregation component, we reconstruct the domain specific
subnet by target-source memory and fusion module for target specific knowledge
learning. After that, the outputs are fed into a fusion module for knowledge
aggregation. Likewise, the shared and specific knowledge are aggregated together
to make the final prediction by the predictor.

MMeSN mainly consists of four components: extractor, source knowledge
memorization, memory-enhanced aggregation, and predictor. Here, the extrac-
tor extracts the feature representations from the input data, capturing the in-
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teractions between multiple factors. We implement it with a feature embedding
layer followed by a flatten layer and two fully connected layers with the acti-
vation function ReLU, which is denoted as fE(·) for short. While the predictor
receives the concatenation of the output from domain specific and independent
subnet, then generates the prediction utilizing a linear transformation with Sig-
moid function. In the following, we detail the key components: source knowledge
memorization and knowledge-enhanced aggregation.

3.1 Source Knowledge Memorization

To learn the historical patterns of different residential areas, we design the source
knowledge memorization component, consisting of a joint decomposition archi-
tecture and multiple source memories. The former architecture jointly decouples
the domain-independent & domain-specific information for all sources, and the
latter separately memorize the specific historical patterns for each source by the
memory network.

Though the temperature changes differently among residential areas, it still
obeys the same underlying heat exchange rules in the real-world scenario. For ex-
ample, the indoor temperature rises with the increment of heating temperature
and outdoor temperature. Motivated by such fact, we design the joint decom-
position architecture, which consists of the domain independent subnet (DI)
and domain specific subnet (DS) with n branches for independent and specific
knowledge learning, thus alleviating the complexity of knowledge transfer.

In our task, given the source data Xs ∈ RK×m with a fixed window size
K, we specify the source input as the feature representations fE(X

s) learned
by the extractor. Then the extracted domain independent knowledge by DI and
domain specific knowledge by DS-s are further concatenated as the output of
source knowledge memorization. We implement the domain independent subnet
with two fully connected layers followed with ReLU and batch normalization.
The output of this module is denoted as zsDI = fDI(fE(X

s)).
As for the domain specific subnet, we design n branches for n different

sources. Considering the distribution of each source data changes over time, we
implement each branch with a memory network trained by the corresponding
source data to memorize the historical information. Memory network is effective
to model the sequential data, storing the long-term dependencies. The structure
of memory network is illustrated in Figure 2 (a). We construct a memory matrix
Ms ∈ RV×d to store the historical information for source s, which contains V
memory representations with dimension d. Each row of the memory matrix can
be regarded as one distribution pattern of historical data. For each input source
data Xs, we get the key vector ks = fE(X

s) ∈ Rd, which is then utilized to
calculate the similarity score psj with each slice of memory representation Ms

j .
The output of domain specific subnet zsDS is calculated by the weighted sum of
memory slices shown in equation 1.

psj =
exp(< ks,Ms

j >)∑V
i=1 exp(< ks,Ms

i >)
, zsDS =

V∑
j=1

psj ∗Ms
j (1)
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Fig. 2. The process of knowledge aggregation

When retrieving the historical patterns by the memory network, it generates
the most relevant memory representation by merging all memory slices with
the similarity scores. Compared with the fully connected network learning the
mapping function weights, the memory network is more general and robust in
transferring scenarios as it learns the historical patterns stored in memory slices.

3.2 Memory-enhanced Aggregation

After the source data pre-training stage, the shared and specific knowledge from
multiple sources is memorized within the DI and DS modules. For better adapt-
ing the source knowledge to the target domain, in memory-enhanced aggre-
gation, we freeze the parameters of domain independent subnet and multiple
source memories. Then, we reconstruct the domain specific subnet, appending
the target-source memory and fusion module to help transfer the source specific
knowledge to the target domain.

Similar to the procedure of source knowledge memorization, in this compo-
nent, the shared knowledge behind all residential areas is learned by the domain
independent subnet with the output ztDI = fDI(fE(X

t)). While the specific
knowledge of the target domain can be viewed as the aggregation of all source
knowledge, whose detail is shown in figure 2 (b). Given the target input data
Xt ∈ RK×m, we get the key vector from the extractor kt = fE(X

t) ∈ Rd with
window size K, which is then fed into the domain specific subnet to generate
n source memory representations v1,v2, ...,vn. Besides, we utilize the target-
source memory to help incorporate the source knowledge which shares the same
structure of the source memory network with different parameters. Here, the
key vector kt is also fed into the target-source memory to generate the correla-
tion representation vt. Then, a linear transformation is adopted to output the
normalized similarity scores c with a Softmax function. After that, the specific
knowledge of the target domain ztDS can be calculated by the weighted sum of
aggregating source memory representations shown in equation 2.

c = Softmax(Wp · vt + bp), ztDS =

n∑
i=1

ci ∗ vi (2)
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4 Experiments

4.1 Settings

Dataset We conduct experiments on a real-world indoor temperature dataset
with four residential areas, collected from 2018/12/15 to 2019/03/15 with hourly
time intervals, including indoor temperature, heating temperature, outdoor tem-
perature, outdoor humidity, wind speed, and wind direction. For evaluation, we
use 4-fold cross-validation, where one residential area is regarded as the target
area and the others as source areas.

Baselines We compare MMeSN with 7 baselines. No Transfer, MFSAN[9],
CoDATS[6], DANN[1], TL-MLP[2], SHL-DNN[4], TL-SMI[5]. In our set-
ting, we adjust the implementations of MFSAN, DANN and CoDATS by chang-
ing the CNN layers to fully connected layers and the classification loss to regres-
sion loss. We also compare several model variants by removing some components
(only DI, only DS, one branch) and replace the memory module with fully
connected layers (w/o Mem, w/o S Mem. w/o T-S Mem).

Model Details We use min-max normalization to normalize the continuous
value to [0,1]. The extractor is implemented by a feature embedding layer with
unit size 8 followed by a flatten layer and 2 fully connected layers with unit size
{64, 16}. As for the source and target memory size, we set the source memory
as 7× 16 and target memory as 6× 16. For domain independent subnet, we use
two fully connected layers with sizes {16, 8}. The slide window size is set as 12.

4.2 Model Comparison

Comparison among different baselines As shown in Table 1, we compare
MMeSN with multiple baselines on four areas. When directly trained with the
observed target data, the DNN model (No Transfer) performs worst, showing
the importance of transfer learning for the data scarcity problem. The next
three approaches (MFSAN, CoDATS, and DANN) achieve a relatively higher
MAE, as these approaches are designed to learn the domain-invariant features
by aligning the distribution of source and target observed data. However, the
future distribution is unforeseeable. The performance decreases when the dis-
tribution shift happens for the target domain. TL-MLP, SHL-DNN, and TL-
SMI are parameter-based methods for time-series prediction, which achieve a
smaller error margin. Note that TL-SMI achieves comparatively better perfor-
mance since this approach is designed for thermal load prediction and selects the
optimum source to pre-train the model and then fine-tunes the whole network
with target data. Our proposed model achieves the best performance comparing
to all baselines with the average 8.6% and 8.3% relative improvement beyond
TL-SMI on MAE and MAPE, respectively. This is because MMeSN decouples
the independent & specific knowledge for each domain and memorizes multiple
intra- and inter-correlations between target and source domains, which improves
the generation for the target prediction.
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Table 1. Comparison with different baselines.

Methods
Area 1 Area 2 Area 3 Area 4 Average

MAE MAPE MAE MAPE MAE MAPE MAE MAPE MAE MAPE

No Transfer 0.625 3.319 0.720 3.923 0.636 2.723 1.171 6.321 0.788 4.071
MFSAN 0.341 1.798 0.474 1.589 0.167 0.715 0.577 2.876 0.390 1.744
CoDATS 0.250 1.316 0.241 1.258 0.190 0.815 0.567 2.685 0.312 1.518
DANN 0.260 1.358 0.264 1.421 0.229 0.985 0.576 2.886 0.333 1.662
TL-MLP 0.316 1.669 0.291 1.562 0.203 0.870 0.466 2.283 0.319 1.596
SHL-DNN 0.293 1.560 0.210 1.222 0.138 0.590 0.428 2.096 0.267 1.367
TL-SMI 0.259 1.371 0.230 1.232 0.122 0.514 0.413 2.021 0.256 1.284

MMeSN 0.243 1.273 0.207 1.112 0.120 0.513 0.366 1.810 0.234 1.177

Comparison among different distributions To verify the generalization
for distribution shift problem, we compare MMeSN with different baselines in
Figure 3 (a) and different model variants in Figure 3 (b). From the comparison
results, our proposed MMeSN could achieve the best performance both among
all baselines and variants, which demonstrates the effectiveness of our model to
alleviate the impact of distribution shift problem.

5 Related Work

Existing transfer learning approaches mainly can be divided into two folds. One
is the domain adaptation based methods by aligning the distribution between
source and target [9, 6]. The other is the parameter-based methods pre-trained
by source data and fine-tuned by limited target data. For urban transfer learning,
it has been widely applied in three-class applications. The first is the prediction
problem, e.g. crowd flow prediction for a new city [7]. The second is the de-
ployment problem, e.g. commercial store site recommendations [8]. The third is
the detection problem which detects the objects of interest [3]. Our proposed
MMeSN adopts the parameter-based methods with multiple memories to pre-
dict the indoor temperature with limited data, which is robust for memorizing
historical knowledge with better transfer generalization.

Fig. 3. Comparison on different time periods of area 4
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6 Conclusion

In this paper, we propose a multi-memory enhanced separation network, MMeSN,
to predict the residential indoor temperature with limited data. For transferring
multi-source knowledge, we adopt a joint decomposition architecture to decouple
the domain independent & specific information and utilize multiple source mem-
ories and target-source memory to learn the historical patterns. Experimental
results demonstrate the advantage of our approach over several baselines.
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