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a b s t r a c t 

Predicting box office revenue (BOR) of movies before releasing on big screens successfully becomes an emerging 

need, as it informs investment decisions on the stock market, the design of promotion strategies by advertisement 

companies, movie scheduling by cinemas, etc. However, the task is very challenging as it is affected by a lot of 

complex factors. In this paper, we first provide a strategic investigation of these influential factors. Then, we 

put forward a novel framework to predict a movie’s BOR by modeling these factors using big data. Specifically, 

the framework consists of a series of feature learning models and a prediction and ranking model. In particular, 

there are two models devised for learning features: (1) a novel dynamic heterogeneous network embedding 

model to simultaneously learn latent representations of actors, directors, and companies, capable of capturing 

their cooperation relationship collectively; (2) a deep neural network-based model designed to uncover high- 

level representations of movie quality from trailers. Based on the learned features, we train a mutually-enhanced 

prediction and ranking model to obtain the BOR prediction results. Finally, we apply the framework to the Chinese 

film market and conduct a comprehensive performance evaluation using real-world data. Experimental results 

demonstrate the superior performance of both extracted knowledge and the prediction results. 
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. Introduction 

Investing in companies from the film industry on the stock market is
arder than investing other companies in traditional industries because
hese film-related companies’ stocks are strongly affected by the finan-
ial performance of their upcoming movies in the short term. Hence,
ccurate and reliable prediction of the Box Office Revenue (BOR) of a
ovie before releasing is an in pressing need, as it greatly informs the

ough investment decision-making process when facing such a high-risk
nd high-yield opportunity. In addition, the prediction is highly impor-
ant for advertisement companies that seek to embed their ads in popular
ovies. Such a prediction can also assist cinemas in scheduling movies

nd help people choose movies to watch. 
However, the task is incredibly challenging as a movie’s BOR is af-

ected by a lot of complex aspects. Here, we first investigate these in-
uential aspects, coming up with five factors falling under two major
tages of the movie-making lifecycle, as illustrated in Fig. 1 : 

(1) Production stage . A movie is made in this stage from an initial
story, through screenwriting, casting, and shooting: 

• Screenwriting . Most film experts believe that a movie’s
story is highly predictive of its ultimate BOR performance
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because the premise of an amazing movie is that there is
a wonderful story [1,2] . 

• Casting . Casting a movie requires teamwork between
three types of main participants, i.e., actor/actress (de-
noted as actor hereafter for simplicity), director, and pro-
duction company. Their performance is considered to be
the most important driver of the movie’s BOR [3,4] . 

• Shooting . A movie is communicated to audiences through
the lens. Therefore, the quality of shooting affect the au-
diences’ perception, which impacts the BOR eventually
[5,6] . 

(2) Distribution stage . After the production, the movie prepares for
releasing in this stage: 

• Promotion . As we know, the more people see the movie
the higher the BOR. Thus, movie promotion generally in-
volves an advertising campaign by distribution companies
to let audiences’ know about and to further pique their
curiosity about the movie [7] . 

• Schedule . Selecting the right time to release is also vital
for the BOR of movies, e.g., releasing to a period with more
holidays and avoiding competition from the same type of
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movies [8] . 
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Fig. 1. Influence factors of the BOR. 
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Initially, the task was considered impossible. Jack Valenti, former
EO of the Motion Picture Association of America, claimed in 1979,
No one can tell you how a movie is going to do in the marketplace, not
ntil the movie opens in darkened theatre and sparks fly up between the
creen and the audience ” Nevertheless, driven by the apparent financial
enefit, researches have been attempting to predict BOR prediction since
983 [9] . Since then, the issue was broadly studied by econometricians
nd operations researchers [10–15] . However, these models are usually
ased on empirical assumptions with hyper-parameters that are not easy
o set. Recently, big data in the film domain have become widely avail-
ble, enabling researchers to solve this challenging problem from a data
erspective [7,16–24] . Nevertheless, the performance of these previous
ethods is fairly limited as they suffer from the following issues. 

(1) In general, each method takes into account some of the influenc-
ing factors, and there is no method that has considered all the
above factors simultaneously (see Section 2 for more details).
Thus, it is a challenge and opportunity to consider all of these
factors simultaneously, and we may expect a better result. 

(2) Casting participants, i.e., actor, director, and production com-
pany, are already extensively used in the prediction task. How-
ever, most of the prior work handled participants independently
by simple hand-crafted features and thus fail to capture depen-
dencies among them [8,25–27] . Instead of an individual partic-
ipant’s expertise, the cooperation between different participants
is essential to determining the casting quality of movies. There-
fore, it is important but difficult to measure their cooperation
especially when these participants have never worked together. 

(3) The existing studies have not fully exploited the potential of trail-
ers due to the high complexity of visual data [5,6,28] . However,
as a snippet of the movie, it is very valuable before the movie
is released. Proper investigation providing information about the
shooting factor from movie trailers is required. 

To tackle these issues, in this paper, we propose a novel framework
o predict a movie’s BOR, considering and modeling all of the above
actors from a wide variety of data. Specifically, the framework con-
ists of a series of feature learning models and a prediction and ranking
odel. First, we propose a Multi-task dynamIc heterogeneous Network
mbedding model (MINE) that learns embeddings for the three types of
articipants in a unified latent space, capable of capturing their coop-
ration knowledge in a collective environment. Second, a Deep Neural
etwork (DNN) is designed to uncover knowledge of the movie shoot-

ng factor from trailers. Besides, we propose to employ a topic model to
xtract knowledge about screenwriting from textual data. Then, we con-
atenate the above knowledge with several hand-crafted features repre-
enting the movie distribution factor as a movie’s feature vector. Finally,
 mutually-enhanced prediction and ranking model is trained based on
he movie feature vectors to provide ultimate prediction results. 

In summary, our contributions include the following: 

• We comprehensively investigate influential factors for a movie’s
BOR. To the best of our knowledge, this is the first work which
takes full consideration of these factors when predicting movies’
BOR. 
26 
• We study a novel dynamic heterogeneous network embedding
method, i.e., MINE, to handle the casting factor. By introducing
dynamic models that capture the temporal correlations of partic-
ipants, MINE can learn all participants’ representations in differ-
ent periods collectively with a multi-task paradigm. 

• In contrast to only considering simple features about trailers such
as the number of plays and audience ratings, we propose to ex-
plore the shooting factor from trailer contents by leveraging the
power of deep neural networks. Experimental results show that
the prediction results using the learned features are significantly
better than these simple features. 

• We firstly build a set of comprehensive film-related datasets
about one of the biggest film markets in the world (i.e., the Chi-
nese film market). These datasets collect movies’ profiles, trailers,
stories, as well as the actors’ profiles from many different web-
sites, and we will release them to the general public to encourage
future studies. Moreover, the results demonstrate the effective-
ness of our framework. We have also deployed the solution as a
service for a business group to assist their investment. 

The rest of the paper is organized as follows: a brief review of related
ork is demonstrated in Section 2 . Section 3 presents an overview of our
ata and solution. Section 4 and Section 5 details two specified feature
earning models, respectively. The prediction and ranking model will be
ntroduced in Section 6 . We evaluate our method in Section 7 followed
y the conclusion of this paper in Section 8 . 

. Related work 

We study several categories of related works, positioning our work
n the research community. 

.1. Box office revenue prediction 

In recent years, big data reflecting movies have become widely avail-
ble, enabling us to solve this challenging problem from a data-driven
erspective. In this section, we mainly focus on these data-driven stud-
es. 

Specifically, these studies can be classified into two groups based
n the time point when conducting the prediction, i.e., pre-release and
ost-release. For the latter, approaches to integrate data about BOR per-
ormance, ratings, and word-of-mouth (e.g., reviews from social media)
f the initial several days could achieve quite accurate results [16,18–
1,23] . Unfortunately, knowing the prediction results at such a late
tage is of little value to business people whose money has been spent
nd who have no time to adjust their investment strategy. The rest of the
esearch was interested in predicting the BOR prior to releasing, and it
s in this group that our study falls. As aforementioned, making predic-
ion at this time point is more commercially valuable. Next, we review
apers of this group in terms of modeling the influential factors. 

(1) Production factors . 
• Screenwriting . Most film experts believe that a movie’s

story is highly predictive of its ultimate BOR performance
[1,2] . Motivated by this, literature took advantage of
scripts to predict the BOR and confirmed the correlation,
e.g., [29,30] . Thus, in this paper, we leverage a topic
model to uncover the power of the story data to depict
this factor. 

• Casting . Participated actors, directors, and companies had
been exploited by related work [8,25–27] . Nevertheless,
they used independent hand-crafted features, i.e., prop-
erties of the three types of participants. This way fails
to capture dependencies among them. Clearly, instead of
an individual participant’s expertise, the cooperation be-
tween different participants determines the casting qual-
ity of movies. Later, Parimi et al. introduced a graph-based
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method to capture relations between movies, such as shar-
ing with the same actors or directors, alleviating the movie
independence assumption [31] . However, the employed
homogeneous graph is too simple to host such a sophis-
ticated relationship. Hence, in this paper, we introduce a
tri-partite graph to handle the issue and develop a novel
embedding method, i.e., MINE to preserve the casting fac-
tor into embeddings of participants. 

• Shooting . The impact of movie trailers on the BOR was
investigated by previous research [5,6,28] . However, fea-
ture extraction in these methods is typically done by hand.
Thanks to the big data era, multimedia data about movies,
such as trailers and posters, are publicly available on
the Internet. In addition, DNNs have demonstrated their
power in understanding these multimedia data. In light of
this, Zhou et al. [24] used movie posters as a supplement
to predict the BOR employing a CNN configuration. Trail-
ers contain far more information than posters. Hence, to
uncover the knowledge to assist in the prediction task, in
this paper, we design a DNN to deal with trailers. 

(2) Distribution factors . Extracting hand-crafted features about the
promotion factor and the schedule factor has also been stud-
ied and showed to be fairly accurate [8,22] . Following the work,
we also adopt these useful features in our paper. 

It is observed that all of these previous studies just considered a part
f the influential factors. Instead, in order to get more accurate predic-
ion results, our method properly considers and models all these factors.

.2. Network embedding 

(1) Static network . Inspired by the setting of word embeddings [32] ,
DeepWalk [33] pioneered network embedding by considering the
node paths traversed by random walks over networks as the sen-
tences and leveraging a skip-gram model for learning node em-
beddings. With the advent of this work, many network embed-
ding models have been developed, such as LINE [34] , node2vec
[35] , and SDNE [36] . However, these models all paid attention
to homogeneous networks. As a newly emerging direction, HIN
[37,38] can naturally model complex entities and their rich rela-
tions, which brings a new challenge to unify the heterogeneous
types of nodes and edges in an embedding space. Recently, sev-
eral works attempted to analyze HINs via embedding methods
[39–44] . However, because these methods are designed for static
heterogeneous networks and difficult to generalize to dynamic
networks, they fail in our participants learning scenario that is in
fact a dynamic heterogeneous network embedding problem. Like
these methods, PTE [45] is an effective model in static heteroge-
neous networks. But, in contrast to them, PTE can be unified into
a matrix factorization framework with closed forms [46] . Taking
advantage of this characteristic, we propose a novel dynamic het-
erogeneous network embedding method, i.e., MINE, making PTE
work in a dynamic environment. 

(2) Dynamic network . In real-world applications, it is well recognized
that edges between nodes evolve over time in a network [47] .
To handle the issue in the field of network embedding, Chen and
Tong [48] proposed a fast eigenvalue-tracking algorithm, called
TRIP, which can be used to update the solution of the SVD prob-
lem when preserving the 1st-order proximity. Goyal et al. used a
dynamically expanding deep autoencoder to capture highly non-
linear 1st- and 2nd- order proximities of nodes [49] . Zhu et al.
presented a model, denoted as DHPE, which develops an incre-
mental updating method to transform a static high-order network
embedding method being dynamic [50] . As previously discussed,
the proposed MINE also devote to tackle the dynamic issue, which
can be distinguished from the existing methods as the following
27 
two aspects. First, these methods are all designed for homoge-
nous networks and incredible to extend to HINs, whereas MINE
is studied based on a HIN. Second, these methods incrementally
handle the dynamic. In specific, suppose that we have learned the
node embeddings before time t , they then investigate solutions
to update these node embeddings at time 𝑡 + Δ𝑡, such that the
updated embeddings can reflect the changed network structure.
However, we jointly learn all snapshots simultaneously, which is
thus better to capture the temporal information globally. 

.3. Video learning 

Videos provide more information to the image recognition task by
dding a temporal component through which motion and other informa-
ion can be additionally used. Encouraged by the success of deep CNNs
n image classification [51] , researches extend the deep networks to
ideo understanding tasks, such as action recognition [52–54] and video
lassification [55,56] . However, our task differs from these conventional
asks in two aspects. First, trailers’ content is more complicated than the
sed videos in these extensively studied tasks. Second, there is a limited
umber of movie trailers and no obvious label data for trailers to sup-
ort us training a monolithic end-to-end network. In light of these issues,
e decompose trailers to a series of keyframes, design a concise deep

onfiguration by stacking several pre-trained components to leverage
nowledge from these well-studied network structures, and propose to
se movie ratings as our training label to assist in understanding these
railers. 

.4. Big data and data fusion 

Big data is a general concept, covering a broad range of topics, from
ig data analytics to data-intensive computing and applications of big
ata research [57,58] . In this paper, we study an application of big data.
hat is, predicting BOR from large datasets consisting of multiple modal-

ties, in which trailers are visual data, stories are textual data, and par-
icipants are network data. 

More specifically, such a multi-modality application can be viewed
s a typical data fusion task. Data fusion has been regarded as a new
hallenge in the big data application research [43,59–61] . According to
heng [59] , data fusion methods can be classified into three categories:
tage-based, feature level-based, and semantic meaning-based. Follow-
ng this line, our framework, from a macroscopic perspective, abides
y the stage-based fusion manner, i.e., using different datasets at the
ifferent stages. From a mesoscopic perspective, the feature extraction
rocess obtains embeddings for each influential factor and fuses them by
he concatenation, which is a feature level-based fusion method. More-
ver, the proposed embedding methods in the feature extraction pro-
ess, such as MINE and the designed deep network, fuse data with the
emantic meaning-based way from a microscopic perspective, because
e carefully design these methods by understanding the insight of each
ataset. Note that the proposed embedding methods also belong to the
ategory of technique research in terms of the big data analytics [47,62–
4] . 

. Overview 

Fig. 2 presents the architecture of our framework. First, data repre-
enting different influential factors of a movie are fed to distinct feature
earning models to extract features of the corresponding movie. Then,
e use these feature vectors to learn a prediction model. Concretely: 

Feature extraction . We concatenate the following features as a
ovie’s feature vector. 

(1) Production stage. Data reflecting factors in this stage are multi-
modality. To avoid heavy and tedious manual feature extraction
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Fig. 2. The architecture of our framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and better capture knowledge, we design three learning com-
ponents, which automatically extract knowledge from the cor-
responding data. 

• Screenwriting . It is impossible to get the full script of a
movie before it releases. In this paper, we use story ab-
stracts, which introduce the movie’s story in a few words,
to model the screenwriting factor of a movie. Topic models
have shown their effectiveness in document understanding
tasks [65] . Hence, we aim to use a topic model to uncover
knowledge about the movie’s screenwriting from the story
abstracts. However, the story abstract data is too short
to train a conventional topic model because of the spar-
sity of word concurrence in a short length document. To
address the issue, we propose employing a bi-term-based
topic model, called BTM [66] . It learns topics by directly
modeling the generation of bi-terms in the corpus, making
the inference effective with the rich corpus-level informa-
tion on short texts. Taking advantage of this model, we
denote the topic distribution vector of a story abstract as
its movie’s screenwriting feature. 

• Casting . As a movie is cast by the three types of partici-
pants, i.e., actor, director, and production company, we
construct a participant network to assist us in uncover-
ing the casting factor. On this basis, the goal here is to
model the cooperation between participants instead of us-
ing hand-crafted features of participants independently.
To this end, we aim to investigate a network embed-
ding model to learn participants’ embedding collectively.
Then, we use these embeddings to generate the casting
features. In particular, using these embeddings makes it
easy to measure cooperation that has never happened be-
fore. However, the task is very challenging. (a) The net-
work of the three types of participants is heterogeneous,
which brings difficulties for the embedding learning. (b)
The network is dynamic over time with evolution of par-
ticipants. E.g., an actor may develop herself from a no-
body to a rising star, and further to an Oscar award win-
ner gradually by his production. Though their name does
not change, they have already become “different persons ”.
Hence, it is reasonable, but very challenging, to assign an
embedding in different periods for each participant. Exist-
ing work about embedding dynamic network [48,50] or
heterogeneous network [39–41] fail to address the two is-
sues simultaneously. To this end, we propose a novel em-
28 
bedding model, i.e., MINE. We will introduce the model
in Section 4 specifically. 

• Shooting . A trailer is a recombination of clips from its origi-
nal movie, which is available before the movie is released.
Thus, in order to decode the shooting factor, we gather
trailers of movies and extract the knowledge from the vi-
sual content. The DNNs have shown promising results in
many computer vision tasks [51,56,67] , which motivates
us to leverage the technology identifying the shooting fac-
tor by projecting a trailer to a vector (i.e., shooting fea-
ture). However, we face two main difficulties when us-
ing deep networks: (a) trailers’ content is more compli-
cated than the videos in traditional video classification
tasks [56] ; (b) We have a limited number of movie trail-
ers that is far from enough to train monolithic architec-
tures. To overcome the two issues, we design a two-stage
network configuration. More specifically, to address the
data limitation issue, we first transfer knowledge from a
well-known video recognition network to pre-process raw
trailers, which thus reduces model complexity dramati-
cally. On this basis, in order to extract higher-level knowl-
edge, we leverage the movie rating to supervise a pair-
wise paradigm. The network is described in more detail in
Section 5 . 

(2) Distribution stage. Data corresponding to factors in this stage
is comprised of a collection of structured data. To include the
knowledge in our prediction models, we extract hand-crafted fea-
tures from the data. 

• Promotion . For a movie, we first collect the number of fans
in social media, historical BORs, ratings, and awards of
its participants as well as the movie’s IP (Intelligent Prop-
erty) information, genre, and the sequel, because they are
promotion materials revealing the original appeal of the
movie. Moreover, the properties of distribution companies
for the movie, such as maximum, minimum, and average
BOR of movies distributed by the company, are used to
identify the ability of the company. Besides, the number of
news about the movie in professional film portal websites
before released is counted as an indicator of the current
promotion effectiveness. 

• Schedule . We use holiday type, the number of holidays,
holiday BOR capacity, capacity growth rate, and other
related data to represent a schedule period. In addition,
we overlay this with competitor data, e.g., the number of
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Table 1 

Notations used in the MINE section. 

Notations Descriptions 

m The length of the embedding 

n The length of the sparse embedding 

t The number of snapshots 

 A set of actors 

 A set of directors 

 A set of companies 

𝐀 𝑖 ∈ ℝ 𝑚 ×| | Actor embedding matrix in the snapshot i 

𝐃 𝑖 ∈ ℝ 𝑚 ×| | Director embedding matrix in the snapshot i 

𝐂 𝑖 ∈ ℝ 𝑚 ×|| Company embedding matrix in the snapshot i 

𝐀 ′
𝑖 
∈ ℝ 𝑚 ×| | Actor sparse embedding matrix in the snapshot i 

𝐃 ′
𝑖 
∈ ℝ 𝑚 ×| | Director sparse embedding matrix in the snapshot i 

𝐂 ′
𝑖 
∈ ℝ 𝑚 ×|| Company sparse embedding matrix in the snapshot i 

𝐁  ∈ ℝ 𝑚 ×𝑛 Base (dictionary) matrix for the actor 

𝐁  ∈ ℝ 𝑚 ×𝑛 Base (dictionary) matrix for the director 

𝐁  ∈ ℝ 𝑚 ×𝑛 Base (dictionary) matrix for the company 

 

 

m  

B  

e  

e  

u  

m  

t  

(  

t  

f

4

 

t  

b  

n  

t

4

 

u  

a  

a  

t  

a  

a  

r

4

 

b  

w
 

c  

a  

F  

r  

m  

q  

c  

d  

n  

d  

e  

 

w  

p  

t  

p  

b  

c

𝑒

w  

r  

s  

m  

u  

1  

v  

𝑏  

l  

r  

a  

c  

d
 

c  

s  

p  

t  

e  

w

4

D  

  

e  

s  

t

4

4

 

n  

w
 

s  

t  

u  

t  

n  

c  

m  

t  

s  

f  

c  

l
 

i  

W

 =  +  

𝑔𝑙𝑜𝑏𝑎𝑙 
+  

𝑙𝑜𝑐𝑎𝑙 
(2) 
competitors and the number of competitors with the same
genre. 

Prediction model . We propose learning a prediction and ranking
odel to take advantage of these movie feature vectors and uncover the
OR of movies. We employ this model since: (1) a linear predictor is
quipped in the model requires very few parameters and has shown its
ffectiveness in many learning-to-rank algorithms [68] . (2) This model
tilizes the ranking information. On the one hand, the ranking infor-
ation helps make decisions for business people; on the other hand,

he predicting and ranking objectives can also be enhanced mutually.
3) A feature selection mechanism is also conducted simultaneously in
his model to eliminate redundant features. Details of the model can be
ound in Section 6 . 

. Dynamic heterogeneous network embedding model 

To model the relationship among participants’ cooperation, i.e., ac-
ors, directors, and production companies, we propose a novel em-
edding model, i.e., MINE. In this section, we first formalize the dy-
amic heterogeneous network embedding problem. Then, we describe
he MINE for tackling the problem in detail. 

.1. Preliminaries 

Table 1 lists frequently-used notations in the section. Note that we
se lowercase bold letters, such as a , to represent vectors. Data matrices
re written in uppercase bold letters, such as X . Calligraphic letters, such
s  , are used to represent sets. In addition, X i indicates the matrix of
he time slot i , X ( jd ) represents the j th row and k th column of the matrix,
nd 𝐁 

 denotes the matrix for the type of set  . Finally, we adopt ℝ
nd ℝ + to denote the set of real numbers and non-negative real numbers,
espectively. 

.1.1. Graph construction 

As pervious mentioned, the relationship between participants can
e represented by a network. Here, we show how we construct this net-
ork. 

We propose to use a tripartite graph [37,38] to host participants’
ooperation relationship, which is composed of two sub-networks, i.e.,
n actor-director network and an actor-company network, as shown in
ig. 3 (a). This is because the cooperation between the actor and the di-
ector and the cooperation between the actor and the company are two
ain interactions, whereas the director and the company have no fre-

uent cooperation patterns. In addition, the graph is dynamic as their
ooperation relationship is time-evolving. In order to easily generate
ifferent embeddings at different timepoints for a participant, we de-
ote the dynamic network as a sequence of snapshots. Thus, we further
29 
emonstrate how to model the dynamics. In other words, the calculated
dge weights of these snapshots vary according to newly added movies.

More specifically, to identify the cooperation between participants,
e define a score, as shown in Eq. (1) , to determine the edge weight of
articipants according to the quality of their cooperated movies before
he timestamp of this snapshot. Take the first snapshot of  as an exam-
le. Suppose  𝑗𝑘 = { 𝑚 1 , 𝑚 2 , … , 𝑚 | 𝑗𝑘 |} is a set of movies cooperated
y participants j and k before this snapshot, their edge weight e jk can be
alculated by Eq. (1) : 

 𝑗𝑘 ≡ 𝑤 1 𝜎
⎛ ⎜ ⎜ ⎝ 1 2 

| 𝑗𝑘 |∑
𝑧 =1 

( 𝑏 𝑧 + 𝑟 𝑧 ) 
⎞ ⎟ ⎟ ⎠ + 𝑤 2 max 

(
 𝑗𝑘 

)
+ 𝑤 3 max 

(
 𝑗𝑘 

)
𝑠.𝑡. 𝑤 1 + 𝑤 2 + 𝑤 3 = 1 (1) 

here b z and r z is the BOR ranking ratio and rating of movie m z ,
espectively,  𝑗𝑘 = { 𝑏 1 , 𝑏 2 , … , 𝑏 | 𝑗𝑘 |} , and  𝑗𝑘 = { 𝑟 1 , 𝑟 2 , … , 𝑟 | 𝑗𝑘 |} . Be-
ides, 𝜎() is the Sigmoid function, function max () returns the maxi-
um value among the given set, and parameters w 1 , w 2 , and w 3 are
sed to adjust the importance of each part (we set all of them equal to
/3). Concretely, as the real BOR value is impacted by the market en-
ironment, we use the ranking of the BOR instead of the value directly,
 𝑧 = exp − 𝜌( 𝑞− 𝑢 ) ∗ (1 − ( 𝑟𝑎𝑛𝑘 𝑧 ∕ 𝑡𝑜𝑡 𝑢 )) where u is the snapshot when m z is re-
eased, tot u is the total number of movies released around the snapshot,
ank z is the BOR ranking of m z among tot u movies. exp − 𝜌( 𝑞− 𝑢 ) is a time-
ware weighted function where q is the current snapshot to weaken old
ooperation and highlight new cooperation since the effect of a movie
ecays as time goes on. 

In summary, the intuition of the score is to consider both long-term
ooperation (the first part) and greatest cooperation (the last two parts)
ince cooperation quantity is vital, but cooperation quality is more im-
ortant where moviegoers always remember those excellent movies. For
he next snapshot, as the cooperated movies are updated, we recalculate
ach edge weight according to Eq. (1) using a new movie set. At last,
e generate t snapshots of  in this way. 

.1.2. Problem definition of the participant embedding 

efinition 1 Participant Embedding Problem . Given a dynamic graph
 including t snapshots, the task is to learn the m-dimensional latent
mbeddings { 𝐀 1 , 𝐀 2 , … , 𝐀 𝑡 } , { 𝐃 1 , 𝐃 2 , … , 𝐃 𝑡 } , and { 𝐂 1 , 𝐂 2 , … , 𝐂 𝑡 } for all
napshots collectively and simultaneously, preserving cooperation rela-
ionships between the three types of participants. 

.2. MINE 

.2.1. Model overview 

In order to tackle the defined problem, we propose a novel model,
amed MINE. The main idea of MINE is demonstrated in Fig. 3 (b), in
hich each plate is represented as a snapshot. 

In each snapshot, a static module captures the cooperation relation-
hip into participants’ embeddings. Meanwhile, participants also have
emporal dependencies. This is captured by a global correlation mod-
le among snapshots, which jointly extracts the common characteris-
ics for each specific type of participant. We also learn a local smooth-
ess module for two arbitrary adjacent snapshots, capturing the lo-
al dynamic information. Concretely, participants who have no new
ovies between two adjacent snapshots should have their representa-

ions change smoothly. Notably, the two modules mean our model es-
entially follows a multi-task learning paradigm such that participants
rom all snapshots are projected into a unified latent space, which is
apable of helping us better capture the cooperation relationship by uti-
izing the knowledge between tasks. 

In summary, we give a brief formulation of the MINE as Eq. (2) ,
ncluding three parts according to the above three modules, respectively.

e will detail them subsequently. 

𝑠𝑡𝑎𝑡𝑖𝑐 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 
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Fig. 3. (a) Tri-partite graph of participants; (b) The main 

idea of MINE model . 
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.2.2. Static module 

For a task (snapshot) i , having such a tripartite graph with rich in-
ormation about participants’ cooperation relationship, we aim to pre-
erve the information in participants’ embedding. To this end, we can
dopt PTE [45] , an effective extension of LINE (2nd) in heterogeneous
etworks that can capture both network structures and semantic in-
ormation in embeddings. In fact, the cooperation relationship can be
epresented by the two-fold information. This is because the structures
epresent whether they have cooperated and the semantic information
tands for the quality of the cooperation. 

In addition, in order to apply this algorithm to our framework, we
dopt a matrix factorization based PTE model as [46] proved that the
lgorithm can be unified into a matrix factorization framework with
losed forms. Eq. (3) shows the matrix that implicitly approximates PTE
n our scenario. 

 𝑖 = log 
⎛ ⎜ ⎜ ⎜ ⎝ 
⎡ ⎢ ⎢ ⎢ ⎣ 
𝛼vol 

(
𝐆 

 

𝑖 

)(
𝐌 

 

𝑖 𝑟𝑜𝑤 

)−1 
𝐒  

𝑖 

(
𝐌 

 

𝑖 𝑐𝑜𝑙 

)−1 

𝛽vol 
(
𝐆 

 

𝑖 

)(
𝐌 

 

𝑖 𝑟𝑜𝑤 

)−1 
𝐒  

𝑖 

(
𝐌 

 

𝑖 𝑐𝑜𝑙 

)−1 

⎤ ⎥ ⎥ ⎥ ⎦ 
⎞ ⎟ ⎟ ⎟ ⎠ − log 𝑏 (3)

ake bipartite graph 𝐆 

 

𝑖 
as an example, we use 𝐒  

𝑖 
∈ ℝ 

| |×| | to de-
ote its adjacency matrix, and use 𝐌 

 

𝑖 𝑟𝑜𝑤 
and 𝐌 

 

𝑖 𝑐𝑜𝑙 
to denote its di-

gonal matrices with row and column sum, respectively. In addition,
ol ( 𝐆 

 

𝑖 
) = 

∑
𝑗 

∑
𝑘 𝐒  

𝑖 ( 𝑗𝑘 ) 
is the volume of graph 𝐆 

 

𝑖 
. 

As Eq. (3) is computationally complex, following Yang et al. [69] , we
actorize the matrix 𝐗̂ 𝑖 shown in Eq. (4) instead of X i . This is because X i 

as much more non-zero entries than 𝐗̂ 𝑖 and the complexity of matrix
actorization is proportional to the number of non-zero entries. 

̂
 𝑖 = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝛼vol 

(
𝐆 

 

𝑖 

)(
𝐌 

 

𝑖 𝑟𝑜𝑤 

)−1 
𝐒  

𝑖 

(
𝐌 

 

𝑖 𝑐𝑜𝑙 

)−1 

𝛽vol 
(
𝐆 

 

𝑖 

)(
𝐌 

 

𝑖 𝑟𝑜𝑤 

)−1 
𝐒  

𝑖 

(
𝐌 

 

𝑖 𝑐𝑜𝑙 

)−1 

⎤ ⎥ ⎥ ⎥ ⎦ (4)

With this information in hand, we then formalize the static module
or a single task as: 

 

𝑠𝑡𝑎𝑡𝑖𝑐 
( 𝑖 ) = ‖𝐗̂ 𝑖 − 

[
𝐃 𝑖 , 𝐂 𝑖 

]T 𝐀 𝑖 ‖2 𝐹 (5)

here ‖⋅‖2 
𝐹 

denotes the Frobenius norm. By means of this, we encode
he cooperation information of participants into their embeddings under
 collective environment. 

As a result,  

𝑠𝑡𝑎𝑡𝑖𝑐 = 

∑𝑡 

𝑖 =1  

𝑠𝑡𝑎𝑡𝑖𝑐 
( 𝑖 ) for all tasks. 

.2.3. Global correlation module 

A basic assumption of this module is that participants of the same
ype should have common characteristics. For instance, there may be a
emplate for actors that includes their performance skills. An arbitrary
ctor is thus a combination of these skills from the template. Know-
ng the template can assist us in obtaining a more accurate embedding.
nspired by the sparse coding technology [70] , the module intends to
ncover type-based high-level latent features by a global dictionary (or
ase) overall tasks. 

Thus, we model this module on task i as: 

 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

𝑔𝑙𝑜𝑏𝑎𝑙 ( 𝑖 ) 
= 

‖‖‖𝐀 𝑖 − 𝐁 

 𝐀 

′
𝑖 

‖‖‖2 𝐹 + 

‖‖‖𝐃 𝑖 − 𝐁 

 𝐃 

′
𝑖 

‖‖‖2 𝐹 + 

‖‖‖𝐂 𝑖 − 𝐁 

 𝐂 

′
𝑖 

‖‖‖2 𝐹 (6)
30 
here 𝐁 

 , 𝐁 

 , and 𝐁 

 are high-level bases (i.e., templates) for each
ype of participants shared by all tasks, 𝐀 

′
𝑖 
, 𝐃 

′
𝑖 
, and 𝐂 

′
𝑖 

are the sparse

epresentation for each participant. Finally,  

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

𝑔𝑙𝑜𝑏𝑎𝑙 
= 

∑𝑡 

𝑖 =1  

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

𝑔𝑙𝑜𝑏𝑎𝑙 ( 𝑖 ) 
for

ll tasks. 

.2.4. Local smoothness module 

It is reasonable that the state of a participant who participates in
ew movies from the former snapshot to the latter should be changed.
n contrast, for the rest of the participants, their state should be as sta-
le as possible. Hence, this module aims to penalize disagreements for
hese participants. Supplemented by the local temporal knowledge, the
mbedding is able to become more reasonable. Following this idea, for
wo arbitrary adjacent tasks, the module is formulated as: 

 

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

𝑙𝑜𝑐𝑎𝑙 ( 𝑖 ) 
= 

‖‖‖𝐈  

𝑖 
⊙
(
𝐀 𝑖 − 𝐀 𝑖 −1 

)‖‖‖2 𝐹 + 

‖‖‖𝐈  𝑖 
⊙
(
𝐃 𝑖 − 𝐃 𝑖 −1 

)‖‖‖2 𝐹 
+ 

‖‖‖𝐈  𝑖 ⊙ (
𝐂 𝑖 − 𝐂 𝑖 −1 

)‖‖‖2 𝐹 (7) 

here ⊙ denotes the Hadamard product. 𝐈  

𝑖 
, 𝐈  

𝑖 
, and 𝐈  

𝑖 
are identity

atrices, indicating if a participant does not produce new movies in the
napshot, e.g., 𝐈  

𝑖 ( 𝑗) = 1 , if actor j cast a new movie from snapshot 𝑖 − 1

o i ; 𝐈  

𝑖 ( 𝑗) = 0 , otherwise. As a result,  

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

𝑙𝑜𝑐𝑎𝑙 
= 

∑𝑡 

𝑖 =2  

𝑑𝑦𝑛𝑎𝑚𝑖𝑐 

𝑙𝑜𝑐𝑎𝑙 ( 𝑖 ) 
for any two

djacent tasks. 
Note that, by means of the two dynamic modules, our framework

an be seen as a multi-task model. Specifically, according to [71] , multi-
ask learning is to learn these related tasks simultaneously by extracting
nd utilizing appropriate shared information across tasks. By leverag-
ng the global correlation module and the local smoothness module, an
mbedding coordinate cross all snapshots is constructed, projecting par-
icipants from all snapshots into a unified latent space. Therefore, the
wo modules make our model essentially follow a multi-task learning
aradigm. That is, we can treat each snapshot as a task and regard the
oordinate as the shared information across tasks. By learning all these
asks simultaneously, we can better capture the cooperation relationship
f participants as the utilization of the temporal knowledge between
asks. 

.2.5. Model inference 

By combining all the aforementioned three modules, the objective of
INE in Eq. (2) can be formulated as Eq. (8) , where   ,   , and   are

hree sets of identity matrices, e.g.,   = { 𝐈  

2 , 𝐈 
 

3 , … , 𝐈  

𝑡 
} . 𝛿, 𝜇, 𝜖, 𝜏, and

are hyper-parameters. The first three components are the three mod-
les above, respectively. The subsequent component is to prevent our
mbedding overfitting by the L2 penalty. Note that the next component
s the L1 penalty for these sparse representations and the global bases
re subjected to a small constant to ensure the effectiveness of the L1
enalty. 

 
(
 ,   ,   ,   , 𝛿, 𝜇, 𝜖, 𝜏, 𝜌

)
= 1 

2 

𝑡 ∑
𝑖 =1 

‖‖‖𝐗̂ 𝑖 − [𝐃 𝑖 , 𝐂 𝑖 ]T 𝐀 𝑖 ‖‖‖2 𝐹 
+ 𝛿

2 

𝑡 ∑
𝑖 =1 

(‖‖‖𝐀 𝑖 − 𝐁  𝐀 ′𝑖 ‖‖‖2 𝐹 + ‖‖‖𝐃 𝑖 − 𝐁  𝐃 ′𝑖 ‖‖‖2 𝐹 + ‖‖‖𝐂 𝑖 − 𝐁  𝐂 ′𝑖 ‖‖‖2 𝐹 )
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Table 2 

Notations used in the visual embedding section. 

Notations Descriptions 

K a keyframe (image) 

 𝑖 = { 𝐊 𝑖 1 , 𝐊 
𝑖 
2 , … , 𝐊 𝑖 

𝑙 
} a trailer i containing l keyframes 

𝐦 

𝑖 ∈ ℝ 𝑙 a l -dimension middle-level embeddings of trailer i 

𝐱 𝑖 ∈ ℝ 𝑛 a n -dimension high-level embeddings of trailer i 

D  

{  

b  

f

5

 

w  

i  

m  

d  

h  

a  

C  

M  

t  

n  

a  

d  
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m  

c  

a  
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t  

t  
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t  

a  

t
i

5

 

b  

w  

i  

t  

i  

L  

i  

a  

m  

H  

c  

s  

l  

m  

H  

o  

q  

m  

g  

s  
+ 𝜇
2 

𝑡 ∑
𝑖 =2 

(‖‖‖𝐈  𝑖 
⊙
(
𝐀 𝑖 − 𝐀 𝑖 −1 

)‖‖‖2 𝐹 + ‖‖‖𝐈  𝑖 
⊙
(
𝐃 𝑖 − 𝐃 𝑖 −1 

)‖‖‖2 𝐹 + ‖‖‖𝐈  𝑖 ⊙ (
𝐂 𝑖 − 𝐂 𝑖 −1 

)‖‖‖2 𝐹 )
+ 𝜖

2 

𝑡 ∑
𝑖 =1 

(‖‖𝐀 𝑖 ‖‖2 𝐹 + ‖‖𝐃 𝑖 ‖‖2 𝐹 + ‖‖𝐂 𝑖 ‖‖2 𝐹 )
+ 𝜏

𝑡 ∑
𝑖 =1 

( 

 ∑
𝑗=0 

‖‖‖𝐚 ′𝑖 ( 𝑗) ‖‖‖1 +  ∑
𝑗=0 

‖‖‖𝐝 ′𝑖 ( 𝑗) ‖‖‖1 +  ∑
𝑗=0 

‖‖‖𝐜 ′𝑖 ( 𝑗) ‖‖‖1 
) 

𝑠.𝑡. 
∑
𝑗 

(
𝐁  

)2 
𝑗,𝑘 

≤ 𝜌, 
∑
𝑗 

(
𝐁  

)2 
𝑗,𝑘 

≤ 𝜌, 
∑
𝑗 

(
𝐁  

)2 
𝑗,𝑘 

≤ 𝜌; ∀𝑘 = 1 , … , 𝑛 (8) 

In general, the objective function is not jointly convex to all the
ariables but is convex for every single variable. Thus, we separate
he optimization to several subproblems and utilize the block coordi-
ate descent approach [72] to solve this problem. Namely, we itera-
ively update the values of one set of the variable while fixing the val-
es of others until convergence. The inference algorithm is presented in
lgorithm 1 . Specifically, A, D or C can be easily optimized by gradient
escent. In addition, when solving the bases B , the problem is actually
n L2-constrained least squares problem, so we adopt the well-known
agrange dual algorithm [70] to address it in each round. Optimizing
he sparse representation, i.e., 𝐀 

′
, 𝐃 

′
, and 𝐂 

′
, is a typical L1-regularized

east squares problem. An efficient algorithm is used to tackle the prob-
em in each iteration, denoted as the feature-sign search algorithm [70] .

Algorithm 1: Inference algorithm for the MINE model. 

Set :  ,   ,   ,   , 𝛿, 𝜇, 𝜖, 𝜏, 𝜌, 𝜓 

Initiate : Initiate { 𝐀 1 , 𝐀 2 , …, 𝐀 𝑡 } , { 𝐃 1 , 𝐃 2 , …, 𝐃 𝑡 } , 
{ 𝐂 1 , 𝐂 2 , …, 𝐂 𝑡 } , 𝐁 

 , 𝐁 

 , 𝐁 

 , { 𝐀 

′

1 , 𝐀 

′

2 , …, 𝐀 

′
𝑡 
} , 

{ 𝐃 

′

1 , 𝐃 

′

2 , …, 𝐃 

′
𝑡 
} , and { 𝐂 

′

1 , 𝐂 

′

2 , …, 𝐂 

′
𝑡 
} with small 

random values 
1 Let 𝑖 ∶= 1 
2 do 

3 for snapshot 𝑖 do 

4 Update 𝐀 𝑖 , 𝐃 𝑖 , and 𝐂 𝑖 based on gradient descent, 
respectively 

5 Update 𝐀 

′
𝑖 
, 𝐃 

′
𝑖 
, and 𝐂 

′
𝑖 

based on the feature-sign 

search algorithm, respectively 
6 Update 𝐁 

 , 𝐁 

 , and 𝐁 

 based on the Lagrange dual 
algorithm, respectively 

7 𝑖 = 𝑖 + 1 
8 until |𝐿𝑜𝑠𝑠 𝑔 − 𝐿𝑜𝑠𝑠 𝑔+1 | > 𝜓 

Return : embeddings { 𝐀 1 , 𝐀 2 , …, 𝐀 𝑡 } , { 𝐃 1 , 𝐃 2 , …, 𝐃 𝑡 } , 
{ 𝐂 1 , 𝐂 2 , …, 𝐂 𝑡 } 

Computational complexity . Here, we analyze the complexity of
INE. According to the above updating rules, for a static snapshot, the

ime complexity is roughly 𝑂( 𝑚𝑛 ) + 𝑂( 𝑛𝑠 ) + 𝑂( 𝑚𝑘 ) per vector, where s is
he “sparsity ” of the encoding (number of non-zero entries) and k is the
verage number of edges in the network. As a result, the efficiency of
he dynamic model is about 𝑂( 𝑡𝑛 ( 𝑚𝑛 + 𝑛𝑠 + 𝑚𝑘 )) , where t is the number
f snapshots and n is the number of nodes in a network. 

. Visual embedding model 

In order to extract knowledge about the movie shooting, we design
n emerging network configuration. In this section, we first introduce
he trailer embedding problem. Then, the main idea of designing the
etwork is described. Finally, we illustrate how to train the network. 

.1. Preliminaries 

Table 2 lists frequently-used notations in this section. 
31 
efinition 2 Trailer Embedding Problem . Given t trailers,
  1 ,  2 , … ,  𝑡 } , the task is to learn the n -dimensional latent em-
eddings { 𝐱 1 , 𝐱 2 , … , 𝐱 𝑡 } with high-level knowledge about the shooting
actor. 

.2. Intuition of our method 

We have identified two key challenges to tackle the problem,
hich motivate a two-stage network configuration design, as shown

n Fig. 4 (a). Specifically, processing raw trailers is computationally de-
anding since each video contains numerous frames. Meanwhile, we
o not have enough training data (i.e., trailers) for this task. With the
elp of extensive data in the image and video domain, we first train
 network designed for a video classification task [55] , using stacked
onvolutional Neural Networks (CNNs) [51,73] and Long-Short Term
emory networks (LSTMs) [74,75] . Then, we fix the network, entitled

he trailer embedding extraction network, and feed raw trailers to the
etwork to gain compact trailer embeddings. These embeddings about
ppearance and motion features can be seen as middle-level embed-
ings for trailers. Therefore, in order to further learn high-level features
bout the shooting factor (shooting quality and even plotline) over the
iddle-level features, a pairwise Siamese network [76] is learned by

omparing two ratings of the two trailers’ original movie. Our ratings
re scored by audiences according to the picture quality and plotline
f a movie and regardless of its shooting styles, capable of impacting
ovies’ BOR [8,25,26,31] . Thus, to capture high-level features about

he shooting quality and even plotline from the shooting styles (i.e.,
he middle-level knowledge), we propose to use the information to su-
ervise the network. Notably, the network best suits our scenario where
raining data are limited [76] . Therefore, we address the two challenges
bove and obtain a concise vector with high-level knowledge for each
railer (i.e., the dense vector of the last fully connected layer, e.g., “FC3 ”
n Fig. 4 (a)). 

.3. Training and inference 

As illustrated in Fig. 4 (b), we first feed a trailer  𝑖 to the trailer em-
edding extraction network. Features of keyframes are extracted by a
eight shared CNN network, i.e. GoogLeNet [77] , which the network

s simple and with distinguished feature diversity characteristics. Then
he frame-level information is combined, using the LSTM units, allow-
ng the discovery of long-range temporal relationships. Following an
STM layer, a Softmax classifier makes a classification at every frame
n the original task. We obtain m 

i by an element-wise multiplication
mong each hidden state 𝐡 𝑖 

𝑗 
of the corresponding j th LSTM unit as the

iddle-level trailer embedding. The element-wise multiplication (a.k.a.
adamard-Product) is a useful knowledge fusion operation [78,79] . In
ontrast to taking an average of multiple vectors (the most common fu-
ion operation), the element-wise multiplication can make feature se-
ection to some extent. Namely, it can amplify the redundant infor-
ation. In our scenario, different keyframes bring much information.
owever, for a trailer, useful knowledge should be the information that
ften appears in pictures, e.g., symbols, colors, and characters. Conse-
uently, we use the element-wise multiplication to identify such infor-
ation. Note that the GoogLeNet is initialized from a pre-trained Ima-

eNet [51] model and then can be fine-tuned over a large video dataset,
uch as UCF-101 [80] . Specifically, we can add two dense layers over the
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Fig. 4. The trailer embedding model. 
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railer embedding extraction network, which becomes an effective net-
ork structure for visual recognition, as presented in [54] . Concretely,

he last dense layer has 101 dimensions, providing the action classifica-
ion results w.r.t. the 101 categories. In addition, the other dense layer
ith 256 dimensions is used to bridge the trailer embedding extraction
etwork and the output layer. Based on the structure, we can fine-tune
arameters of the trailer embedding extraction network (including these
oogLeNets) by the supervised visual recognition task using UCF-101
ata. Through the way, we can leverage the existing big data to allevi-
te the issue that we do not have enough trailers to train a monolithic
rchitecture end-to-end. 

The Siamese network is a weight shared pairwise paradigm. We feed
he learned trailer embedding into the network in pairs. The network
aps each input middle-level embedding m 

i to a high-level x i . The two
utputs of the model are mapped to a learned probability that rating
f trailer i should be higher than that of trailer j via the Sigmoid func-
ion, i.e., 𝑝 𝑖𝑗 = 1∕(1 + exp −( 𝐱 𝑖 − 𝐱 𝑗 ) ) . We then apply the cross-entropy cost
unction, which penalizes the deviation of the model output probabili-
ies from the desired probabilities. Let 𝑝̄ 𝑖𝑗 be the known probability that
he rating of trailer i should be higher than that of trailer j (Suppose 𝑟̄ 𝑖 

nd ̄𝑟 𝑗 are the ratings of trailers i and j respectively. The groundtruth 𝑝̄ 𝑖𝑗 
s also calculated by the Sigmoid function, i.e., 𝑝̄ 𝑖𝑗 = 1∕(1 + exp −( ̄𝑟 𝑖 − ̄𝑟 𝑗 ) ) ).
hen the cost function is: 

 𝑆𝑖𝑎𝑚𝑒𝑠𝑒 = − ̄𝑝 𝑖𝑗 log 𝑝 𝑖𝑗 − 

(
1 − 𝑝̄ 𝑖𝑗 

)
log 

(
1 − 𝑝 𝑖𝑗 

)
(9)

he stochastic gradient descent algorithm is utilized to update the pa-
ameters of the network. More details about the network can be found in
81] , which employs the Siamese paradigm for a ranking task, denoted
s RankNet. 

. Prediction and ranking model 

In this section, we introduce the prediction and ranking model,
hich uncovers the BOR of movies using the movie feature vectors. 

.1. Preliminaries 

Through the feature extraction stage, we can obtain a feature vector
or each movie, including casting features, shooting features, screenwrit-
ng features, and handcrafted features about distribution factors. Math-
matically, let 𝐳 𝑖 ∈ ℝ 

𝑑 denote a d -dimension feature vector of movie m i .

 i and 𝑦̂ 𝑖 represents real and predicted BOR value of m i , respectively,
hile r i and 𝑟̂ 𝑖 represents real and predicted ranking of m i in a set of
ovies, respectively. 

efinition 3 (BOR Prediction and Ranking Problem) . The task is to
rain a model with movie feature vectors  

𝑡𝑟 = { 𝐳 𝑡𝑟 1 , 𝐳 
𝑡𝑟 
2 , … , 𝐳 𝑡𝑟 

𝑚 
} , real

OR values  

𝑡𝑟 = { 𝑦 𝑡𝑟 1 , 𝑦 
𝑡𝑟 
2 , … , 𝑦 𝑡𝑟 

𝑛 
} , and rankings  

𝑡𝑟 = { 𝑟 𝑡𝑟 1 , 𝑟 
𝑡𝑟 
2 , … , 𝑟 𝑡𝑟 

𝑚 
} ,
a  

32 
o learn a model. Then, it can be used to obtain predicted BOR val-
es ̂ 

𝑡𝑒 = { ̂𝑦 𝑡𝑒 1 , ̂𝑦 
𝑡𝑒 
2 , … , ̂𝑦 𝑡𝑒 

𝑛 
} and predicted ranking ̂ 

𝑡𝑒 = { ̂𝑟 𝑡𝑒 1 , ̂𝑟 
𝑡𝑒 
2 , … , ̂𝑟 𝑡𝑒 

𝑛 
} ,

iven n testing movies  

𝑡𝑒 = { 𝐳 𝑡𝑒 1 , 𝐳 
𝑡𝑒 
2 , … , 𝐳 𝑡𝑒 

𝑛 
} . 

In addition, a linear predictor is denoted as f () projecting z i to be
lose to the y i . Namely, 𝑓 ( 𝐳 𝑖 ; 𝐰 ) = 𝐰 

𝑇 𝐳 𝑖 + 𝜖𝑖 where 𝜖i is a zero-mean
aussian bias with variance 𝜎2 and w is the weights of the vector. For

implicity, we denote f ( z i ; w ) as f i . Note that, the predictor can be re-
ritten as 𝑃 ( 𝑦 𝑖 |𝐳 𝑖 ) =  ( 𝑦 𝑖 |𝑓 𝑖 , 𝜎2 ) =  ( 𝑦 𝑖 |𝐰 

𝑇 𝐳 𝑖 , 𝜎2 ) from a Bayesian per-
pective, where  represents the normal distribution. 

.2. Model details 

In this paper, we propose using a prediction and ranking model,
hich combines a linear prediction objective, a pairwise ranking ob-

ective, and a sparsity regularizer in a unified probabilistic paradigm.
ere, we detail how to train the model. Specifically: 

Given  

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 , by Bayesian inference, we have the posterior proba-
ility of the model as: 

 𝑟 (Ψ,  , Ω) = 𝑃 (  |Ψ, Ω) 𝑃 (Ψ|Ω) (10)

here Ψ = { 𝐯 , 𝛽2 } denotes parameters of the model. Ω = { 𝑎, 𝑏, 𝜎2 } are
yper-parameters of the sparsity regularization.  = {  

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 ,  

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 }
epresents the observed data. 

The first term 𝑃 (  |Ψ, Ω) is the likelihood of the observed data D , i.e.
he predictor and the ranker. It can be explained as: 

 (  |Ψ, Ω) = 𝑃 ( 𝑌 |Ψ, Ω) 𝑃 (Π|Ψ, Ω) 

= 

𝑚 ∏
𝑖 =1 

 

(
𝑦 𝑖 |𝑓 𝑖 , 𝜎2 )𝑚 −1 ∏

𝑖 =1 

𝑚 ∏
ℎ = 𝑖 +1 

𝑃 ( 𝑖 → ℎ |Ψ, Ω) (11) 

here P ( Y | Ψ, Ω) is the linear predictor. P ( Π| Ψ, Ω) minimizes the ranking
f movie m i compared with each movie in the training set, in which
 → h defines movie m i is ranked higher than movie m h measured by the
igmoid function 𝑃 ( 𝑖 → ℎ ) = 1∕(1 + exp −( 𝑓 𝑖 − 𝑓 ℎ ) ) . As a result, we optimize
he prediction and ranking objectives simultaneously by this term in a
utually enhanced manner. 

The last term P ( Ψ| Ω) is a sparse weight prior distribution to conduct
he feature selection and avoiding overfitting: 

 (Ψ|Ω) = 𝑃 
(
𝐯 |0 , 𝛽2 )𝑃 (𝛽2 |𝑎, 𝑏 ) = 

𝑚 ∏
𝑖 =1 

 

(
𝑣 𝑖 |0 , 𝛽2 ) 𝑚 ∏

𝑖 =1 
 ( 𝛽2 

𝑖 
|𝑎, 𝑏 ) (12)

here 𝛽2 is a separate variance parameter vector for v ,  stands for
he Inverse Gamma distribution that is a prior distribution for the 𝛽2 .
mong that, the a and b are constants and usually set close to zero. It
nforces sparse representations during learning by setting some feature
eights to zero. 

The model can be easily optimized by a stochastic gradient descent
lgorithm. For more details about optimization, please refer to [68] .
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7

aving the trained model, we can leverage it to obtain ̂ 

𝑡𝑒 and ̂ 

𝑡𝑒 when
iven  

𝑡𝑒 . 

. Results and discussion 

.1. Settings 

.1.1. Dataset 

As introduced, to evaluate our solution, we collected a set of compre-
ensive movie data about the Chinese film market from Mtime.com, 1 a
hinese version of IMDb. 2 

Specifically, since the Chinese film market was established in 2008,
e collected about 2500 movies from 2008 to 2017, including domestic
nd Hollywood movies released in the market with their BORs and data
bout the aforementioned influential factors. Moreover, to facilitate the
eature learning tasks, we also supplement the following data: 

• A large movie participant database is built to have a real com-
munity of participants. Specifically, the database contains about
21,000 movie and TV entries, around 1,000,000 people entries
who are actors and directors, and 85,000 company entries. 

• Besides trailers of the 2500 movies, we collect about 2000 ad-
ditional trailers. Note that we have ratings for all these movies,
which were rated by Chinese audiences. In order to assist in learn-
ing these trailers, we draw support from a well-known large-scale
video dataset UCF-101 [80] . 

• In addition to story abstracts of the 2500 movies, we gather an-
other 50,000 story abstracts for training the BTM model. 

.1.2. Configuration 

Features extracted by these feature learning models are configured
s follows. 

• MINE . We train two models for domestic and Hollywood movies
respectively since they belong to two disclosed communities. The
step between snapshots is set to one quarter. Embeddings in a
snapshot are employed to generate the movie’s participant fea-
tures in the next snapshot. In addition, we use the mode of embed-
ding and inner production between two embeddings (except the
inner production between directors and companies, as they have
no frequent cooperation patterns) to be our features, denoting
their own and cooperation values. Note that we select three ac-
tors, one director, and two companies as participants for a movie
(We will explain the reason and validate in Section 7.3 ). As a
result, we have 19 dimensions of casting features for each movie.

• Deep network . We set the dimension of output embedding, i.e.,
“FC3 ”, for the Siamese network as 16. Therefore, the shooting
feature of a movie consists of 16 dimensions. (Other settings of
the deep network will be determined by experiments, as shown
in Section 7.3 ) 

• BTM model . The story abstracts are in Chinese. We first handle
these Chinese sentences, the string of characters without spaces,
to word segmentation by using a wild open tool named Jieba. 3 

We set the topic number to 20 for the BTM model. Thus, the
screenwriting feature of a movie contains 20 dimensions. 

For a movie, we concatenate the three features above with another
6 hand-crafted features about the distribution factor. As a consequence,
he movie’s feature vector has 81 dimensions in total. 

.1.3. Metric 

The following metrics are used to measure results in our experiments:
1 http://www.mtime.com/ . 
2 https://www.imdb.com/ . 
3 https://github.com/fxsjy/jieba . 
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• Acc (Accuracy). This metric is used to measure the per-
formance of classification tasks. 𝐴𝑐𝑐 = ( 𝑇 𝑃 + 𝑇 𝑁)∕( 𝑇 𝑃 + 𝐹 𝑃 +
𝑇 𝑁 + 𝐹 𝑁) , where TP, TN, FP , and FN are the number of true
positives, false positives, true negatives, and false negatives re-
spectively. The higher the Acc value, the higher the classification
accuracy. 

• MAPE (Mean Absolute Percentage Error). 𝑀𝐴𝑃 𝐸 =
100% 
𝑇 

∑𝑛 

𝑡 =1 | 𝑦 𝑡 − ̄𝑦 𝑡 𝑦 𝑡 
|, where y t and 𝑦̄ 𝑡 are the real BOR value

and predicted real value, respectively, and n is the total number
of testing movies. The smaller the MAPE value, the higher the
prediction accuracy. 

• NDCG (Normalized Discounted Cumulative Gain). 
Firstly, the discounted cumulative gain (DCG) is given by:

𝐷𝐶𝐺@𝑛 = { 
𝑟 1 , 𝑖𝑓 𝑛 = 1 

𝑁𝐶𝐺@( 𝑛 − 1) + 

𝑟 𝑛 

𝑙𝑜𝑔 2 𝑛 
, 𝑖𝑓 𝑛 ≥ 2 .where r is the pre-

dicted ranking number. Later, given the ideal discounted cumu-
lative gain 𝐷𝐶𝐺 

′@𝑛, NDCG @ n can be computed as 𝑁𝐷𝐶𝐺@𝑛 =
𝐷 𝐶𝐺@𝑛 ∕ 𝐷 𝐶𝐺 

′@𝑛 . The larger the NDCG @ n , the higher the top
n ranking accuracy 

.2. Training and testing data splits 

In order to have more data for the feature extraction, we use movies
eleased from 2015 to 2017 for prediction and use the rest of the data
o learn the feature learning models. In this section, we show how to
ivide the training and testing data from the movies of 2015 to 2017
or the prediction and ranking model. 

First, we demonstrate the BOR distribution of movies from 2015 to
017 in Fig. 5 (a). It is a long-tail distribution, the imbalance of which in-
reases the difficulty of making predictions [82] . Considering the practi-
ality, we should pay more focus on movies with higher BOR. Motivated
y this and in order to alleviate the imbalance, we select 466 movies
rom the 1st quarter (Q1) of 2015 to the 3rd quarter (Q3) of 2017 as
ur training and testing data, belonging to six BOR ranges as evenly
s possible, as reported in Table 3 . Note that except for the first value
ange ( < 1.5M$) where eight movies of each quarter are randomly sam-
led from a large number of movies with low BOR value, the number of
ovies of other value ranges is the actual number of released movies in

he corresponding time range. 
Then we attempt to divide training and testing data from the 466

ovies. Firstly, we use a quarter of movies as the testing set. Thus, the
roblem becomes how to determine a proper time range before the test-
ng quarter where movies released in the range are our training data.
o this end, a classification experiment in terms of the six BOR classes

s designed, in which we use different periods of training data as listed
n Table 4 . Concretely, these training sets vary data from one quarter to
ight quarters. For each training set, we use it to learn one-vs-rest logis-
ic regression models. Results in terms of Acc according to each classifier
re depicted in Fig. 5 (b). 

Results . As seen, classifiers trained by the 3rd, 4th, and 5th train-
ng sets can obtain better results. Thus, we select the length of the 4th
raining set (namely five quarters) to be the training data period here-
fter. With this in hand, we employ a sliding window-based method to
enerate training and testing sets for subsequent experiments where the
indow size is six quarters (the first five quarters belong to a training set
nd movies in the last one quarter form the testing set), and the sliding
tep is set to one quarter. As a result, six sets are generated as reported
n Table 5 . 

.3. Parameter selection 

In this section, we employ the classification task to determine ap-
ropriate parameters for the proposed models, i.e., MINE and the deep
etwork. In each model, we firstly adjust one parameter with other pa-
ameters fixed by default to obtain different embeddings. Then, we use

http://www.mtime.com/
https://www.imdb.com/
https://github.com/fxsjy/jieba
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Fig. 5. (a) BOR value distribution for 2015–2017; (b) 

ACC results of each Training & Testing set. 

Table 3 

Movie distribution w.r.t BOR ranges and quarters (Q: quarter). 

NO. Time Range 1.5 < 1.5-4.6 4.6–12.3 12.3–46.2 46.2–153.8 > 153.8 Tot. 

1 15Q1 8 9 6 8 10 0 41 

2 15Q2 8 12 4 6 6 3 39 

3 15Q3 8 10 10 5 9 4 46 

4 15Q4 8 8 11 10 8 1 46 

5 16Q1 8 10 8 7 4 3 40 

6 16Q2 8 2 6 10 9 2 37 

7 16Q3 8 6 9 12 10 2 47 

8 16Q4 8 10 10 9 8 1 46 

9 17Q1 8 4 3 8 7 3 33 

10 17Q2 8 14 11 9 5 3 50 

11 17Q3 8 2 7 9 13 2 41 

Tot. 15Q1-17Q3 88 87 85 93 89 24 466 

Table 4 

Training and testing sets for validating the periods of training data. 

Testing Training Set [# (periods)] 

set 1(8Q) 2(7Q) 3(6Q) 4(5Q) 

17Q1 15Q1-16Q4 15Q2-16Q4 15Q3-16Q4 15Q4-16Q4 

17Q2 15Q2-17Q1 15Q3-17Q1 15Q4-17Q1 16Q1-17Q1 

17Q3 15Q3-17Q2 15Q4-17Q2 16Q1-17Q2 16Q2-17Q2 

5(4Q) 6(3Q) 7(2Q) 8(1Q) 

17Q1 16Q1-16Q4 16Q2-16Q4 16Q3-16Q4 16Q4 

17Q2 16Q2-17Q1 16Q3-17Q1 16Q4-17Q1 17Q1 

17Q3 16Q3-17Q2 16Q4-17Q2 17Q1-17Q2 17Q2 

Table 5 

Training and testing sets for subsequent experiments. 

No. Training set Testing set NO. Training set Testing set 

I 15Q1-16Q1 16Q2 IV 15Q4-16Q4 17Q1 

II 15Q2-16Q2 16Q3 V 16Q1-17Q1 17Q2 

III 15Q3-16Q3 16Q4 VI 16Q2-17Q2 17Q3 
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W  

G  
eatures generated by these embeddings to train different one-vs-rest lo-
istic regression models for the six classes of BOR. At last, we select the
odel with the best accuracy score and make the parameter of the model

e our parameter. We adopt datasets of I, II, and III in the experiment. 

.3.1. Parameter selection of MINE 

We firstly provide the default settings hereafter: the number of actors
s set as 3, the number of directors equals to 1, and the number of pro-
uction companies is 2. The embedding dimension m = 32, the sparse em-
edding n = 128; the coefficients 𝛿 = 𝜖 = 𝜏 = 1 , 𝜇 = 𝜌 = 10 . Among them,
s we treat each component of our model having the same effect, the
oefficients are determined based on the scale of each component. Thus,
n this section, we focus on discussing the settings of the number of par-
icipants and the dimension of embeddings. 
34 
The number of participants (1) According to Nelson and Glotfelty [83] ,
any studies focused on the presence of a single star fail to account

or the possible synergy of multi-actors and lead to overestimates of the
mpact of a single star on the BOR. Thus, we consider three actors in our
odel by following the setting of Nelson and Glotfelty [83] . To validate

t, we conduct an experiment by choosing the number of actors from 1
o 4. The result is illustrated in Fig. 6 (a), showing that the model with
ultiple actors is better than that of employing a single actor. Based on

he result, we select to consider three actors for our MINE finally. 
(2) In general, there is only one director for each film. Moreover, we

se our data to verify this common sense. About 87% movies have only
ne director in our dataset. Therefore, we only select a director for each
ovie. 

(3) Initially, domain knowledge motivate us to select two production
ompanies for a movie. Specifically, there are usually two companies
o cooperate in producing a movie, including a larger company that is
esponsible for overall planning and a smaller company that is in charge
f specific implementations. Take Iron Man as an example, Paramount
ictures is the larger company, and Marvel Studios Inc. is the smaller
ompany. In addition, we also conduct an experiment to validate the
election, in which we choose the number of companies from 1 to 4. As
hown in Fig. 6 (b), the result supports the knowledge. As a result, we
et the number of companies as 2. 

The dimension of embeddings As shown in Fig. 6 (c) and (d), we obtain
he classification results with m ∈ {32, 64, 128, 256} and n ∈ {16, 32,
4, 128} respectively. With fewer dimensions, performances of embed-
ings are limited as less information is captured. While having higher
imensions, the difficulty of training will increase to deteriorate the per-
ormance. Therefore, we select appropriate dimensions accordingly, i.e.,
 = 128 and 𝑛 = 32 . 

.3.2. Parameter selection of the deep network 

Firstly, the default settings of the deep network are listed hereafter.
e extract sixty keyframes for each trailer. Based on the setting of
oogLeNet [77] , the output dimensions of the GoogLeNet are 1000.
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Fig. 6. Results of parameter selections. 
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ext, an LSTM layer follows, each of which has 512 memory cells. Then,
or the Siamese network, we set dimensions of layers “FC1 ”, “FC2 ”, and
FC3 ” to 128, 64, and 16, respectively. In addition to the pre-determined
arameters, i.e., the dimension of output embedding of GoogLeNet and
FC3 ”, these other parameters are selected based on the corresponding
xperimental results, as depicted in Fig. 6 (e), (f), (g), and (h). 

.4. Effectiveness of features 

In this section, we also use the classification task to evaluate the
ffectiveness of these learned features for each influential factor quan-
itatively. More specifically, we use different features to train a one-vs-
est logistic regression for the six classes of BOR and use the Acc score to
valuate the results. In addition, we provide case studies to demonstrate
he knowledge encoded in each kind of feature visually. 

.4.1. Effectiveness of casting features 

Settings . We evaluate the effectiveness of feature ( F n ) obtained by
mbeddings of our MINE by comparing it with the hand-crafted features
 𝐹 

′
𝑛 
) of participants [8,25–27] and the features generated by embeddings

earned from the following three groups of state-of-the-art methods. 

(1) Features obtained by two static network-based embedding meth-
ods: 

• F LINE [34] : LINE encodes the 2nd- order of node proximity
for static homogeneous networks; 

• F Metapath 2 vec [39] : meta path random walk-based method
based on static HINs; 

(2) Features obtained by two incrementally updated-based dynamic
network embedding models, which are based on homogeneous
networks: 

• F TRIP [48] : TRIP is an online algorithm to track the eigen
functions of a dynamic graph, which preserves the first-
order proximity between nodes; 

• F DHPE [50] : DHPE is a high-order proximity preserving dy-
namic network embedding method. 

(3) Features obtained by two variants of MINE: 
• F M 1 : M1 is only the static module of MINE; 
• F M 2 : M2 is M1 with the global correlation module; 

Notably MINE is M2 with the local smoothness module, and we re-
ain the setting of MINE for its variants. The embedding dimension of
hese embedding learning methods is also 32; the number of walks per
ode is 200; the walk length is 50; the neighborhood size is 5, and the
ize of the negative samples is 3. Other parameters of the baselines are
et by grid search. The process of each of the following tasks is repeated
0 times, and the average results are reported. 
35 
Results . The results in terms of the Acc for the six-class classification
roblem are presented in Table 6 . Overall, using MINE outperforms all
he baselines. Specifically: 

(1) MINE is better than the hand-crafted features, showing that fea-
tures uncovered in a collective environment are more useful than
independent individual ones since a movie is produced by the co-
operation of different participants. 

(2) MINE outperforms the M1 and M2 . First, results of M1 reveal
that the semantic and structural information is preserved so as to
direct this discriminative task. Second, the fact that M2 performs
better than M1 and that MINE further improves upon M2 both
indicate that the shared learning space can support capturing the
cooperation information. 

(3) MINE outperforms Mp2v, which itself performs better than LINE
in the heterogeneous task. With the help of the shared learning
space, the gain obtained by MINE over Mp2v is up to 4–25%. 

(4) MINE outperforms TRIP and DHPE significantly. This is because
both the two dynamic methods are designed for homogeneous
networks, and are thus incapable of modeling the cooperation on
such a complex heterogeneous environment. 

.4.2. Effectiveness of shooting features 

Settings . We evaluate effectiveness of shooting features obtained by
ur deep network by comparing it with two kinds of lower-level features
nd conventional hand-crafted features. 

• 𝐹 
′
𝑣 
: hand-crafted features extracted from trailers [5,6,28] ; 

• F l : low-level feature vector, i.e., element-wise multiplication
among the GoogLeNet output of each keyframe; 

• F m 

: middle-level feature vector, i.e., the output of the trailer em-
bedding extraction network; 

• F v : high-level feature vector, i.e., our shooting feature vector; 

Results . The results in terms of the Acc for the six-class classification
roblem are presented in Table 7 . Specifically, our visual feature vector
erforms better than hand-crafted features. In addition, with increasing
epth of learning (i.e., from F l to F m 

, and further to F v ), the accuracy in-
reases gradually, which demonstrates the effectiveness of our learning
rchitecture. 

.4.3. Effectiveness of feature combinations 

In addition to the above two kinds of features, we also use a topic
odel to extract knowledge from the textual data and design several
and-crafted features from the distribution data. In this section, we
rstly evaluate the effectiveness of the two kinds of features. Then, we
how the performances of combinations of these features, including the
earned features and conventional features. Note that as the methods
f feature learning from the textual and distribution data are similar to
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Table 6 

Acc results for the BOR classification using various casting features. 

Sets 𝐹 
′

𝑛 
F LINE F Mp 2 v F TRIP F DHPE F M 1 F M 2 F n ( MINE ) 

I 0.392 0.331 0.404 0.283 0.302 0.392 0.435 0.481 

II 0.357 0.366 0.463 0.294 0.346 0.421 0.458 0.514 

III 0.404 0.392 0.428 0.302 0.379 0.453 0.503 0.536 

IV 0.394 0.406 0.431 0.365 0.406 0.440 0.511 0.534 

V 0.406 0.375 0.476 0.374 0.386 0.408 0.480 0.502 

VI 0.382 0.343 0.417 0.339 0.322 0.403 0.474 0.519 

Aver. 0.393 0.369 0.437 0.326 0.357 0.420 0.477 0.514 

Table 7 

Acc results for the BOR classification using various shooting features. 

Sets 𝐹 
′

𝑣 
F l F m F v 

I 0.318 0.272 0.347 0.403 

II 0.344 0.291 0.363 0.412 

III 0.331 0.303 0.338 0.394 

IV 0.349 0.298 0.374 0.408 

V 0.335 0.279 0.355 0.406 

VI 0.313 0.266 0.344 0.391 

Aver. 0.334 0.285 0.354 0.402 

Table 8 

Acc. results for the BOR classification using different feature combinations. 

Features I II III IV V VI Aver. 

F t 0.391 0.374 0.386 0.383 0.366 0.368 0.378 

F d 0.431 0.425 0.439 0.416 0.424 0.417 0.425 

𝐹 𝑡 + 𝐹 𝑑 0.458 0.449 0.451 0.435 0.443 0.446 0.447 

𝐹 𝑡 + 𝐹 𝑑 + 𝐹 
′

𝑛 
0.473 0.467 0.480 0.463 0.473 0.468 0.471 

𝐹 𝑡 + 𝐹 𝑑 + 𝐹 
′

𝑣 
0.464 0.453 0.465 0.447 0.456 0.459 0.457 

𝐹 
′

0.482 0.476 0.492 0.480 0.478 0.484 0.482 

𝐹 𝑡 + 𝐹 𝑑 + 𝐹 𝑛 0.548 0.561 0.573 0.565 0.552 0.569 0.561 

𝐹 𝑡 + 𝐹 𝑑 + 𝐹 𝑣 0.499 0.493 0.492 0.483 0.487 0.501 0.493 

F 0.576 0.585 0.594 0.574 0.570 0.582 0.580 
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hat of previous studies, we treat the textual and distribution features
s shared features of both the learned features and conventional fea-
ures. Specifically, we feed the following features to train classification
odels. The accuracy results of these models w.r.t. each testing set are

eported in Table 8 . 

• F t : textual features; 
• F d : distribution features; 
• 𝐹 𝑡 + 𝐹 𝑑 : combining textual and distribution features; 
• 𝐹 𝑡 + 𝐹 𝑑 + 𝐹 

′
𝑛 
: combining textual, distribution, and hand-crafted

casting features; 
• 𝐹 𝑡 + 𝐹 𝑑 + 𝐹 

′
𝑣 
: combining textual, distribution, and hand-crafted

visual features; 
• 𝐹 

′
: combination of all conventional hand-crafted features, i.e.,

𝐹 
′
𝑛 
+ 𝐹 

′
𝑣 
+ 𝐹 𝑡 + 𝐹 𝑑 ; 

• 𝐹 𝑡 + 𝐹 𝑑 + 𝐹 𝑛 : combining textual, distribution, and the learned
casting features; 

• 𝐹 𝑡 + 𝐹 𝑑 + 𝐹 𝑣 : combining textual, distribution, and the learned vi-
sual features; 

• F : the learned feature vector, namely, 𝐹 𝑡 + 𝐹 𝑑 + 𝐹 𝑣 + 𝐹 𝑛 . 

Results . Comparing the performance using F t , F d , 𝐹 𝑡 + 𝐹 𝑑 and 𝐹 𝑡 +
 𝑑 + 𝐹 𝑣 , it is evident that F t and F d can both contribute to the predic-
ion accuracy. The results of feature combinations reveal the advantage
f our strategy that takes consideration of these factors entirely. More-
ver, the results of 𝐹 

′
and F indicate that the latter brings a significant

mprovement to the classification precision, exhibiting the effectiveness
f our feature extraction models further. 
36 
.4.4. Case studies of embedding vectors 

Casting features We select a snapshot and use t-SNE [84] to reduce
ur embeddings to 3D. They are shown in Fig. 7 type by type. From the
D projection surfaces, we notice that they have a linear trend, which
ints that the embeddings are equipped with a high distinguishability
ince the semantic and structural information has been embodied. 

Shooting features For the DNN-based model, there are three levels of
ectors can be used to represent a trailer, namely, the low-level vec-
or, the middle-level vector, and the high-level vector (i.e., the shoot-
ng features), respectively. In order to reveal knowledge encoded in the
hree-level vectors, similar to the textual vectors, we map them into two
imensions using t-SNE [84] and plot them in Fig. 8 (b), (c), and (d), re-
pectively, in which we also mark out the location of the two Chinese
nd the ten Hollywood movies (their locations are at the far left of their
aptions). 

As demonstrated, through preserving the knowledge of the shoot-
ng factor by the three-level learning process, movies with similar BOR
alues tend to cluster together. In particular, we see a clear trend in
ig. 8 (d) where movies show up in descending order from left to right
ccording to their BORs, which indicates there is a strong correlation
etween this knowledge and BOR. Therefore, the kind of embedding is
ignificantly associated with the prediction task. 

Screenwriting features We adopt t-SNE [84] to reduce the textual vec-
ors to two dimensions and show them in Fig. 8 (a). In these figures, each
oint represents a movie, while the size of the point is directly propor-
ional to the BOR of the movie. In addition, we mark out the location
f two Chinese and ten Hollywood hot movies in the figures as exam-
les (their locations are at the far right of their captions). Movies with
imilar topics can be distributed in a nearby region, e.g. these superhero
ovies, which thus can assist in the ultimate prediction goal. 

Distribution features We also show the relationship between BOR and
ve vital hand-crafted features in Fig. 9 . Sequels and other IP movies
re better received than other movies ( Fig. 9 (a)). For a movie, the fewer
ompetitors, the higher the chance to get a higher BOR (top of Fig. 9 (b)).
he number of promotion news articles of a movie in professional film
ortal websites indicates the success of the promotion strategy (bottom
f Fig. 9 (b)). In addition, the average daily BOR of movies on vacations
nd holidays are shown in Fig. 9 (c) and (d). They are brighter spots
han ordinary days. As a result, these features contain the BOR-related
nowledge that can thus help the BOR prediction. 

.5. Effectiveness of prediction model 

In this section, we show the effectiveness of the prediction and rank-
ng model by the following two experiments. 

.5.1. Effectiveness of real-value prediction 

To support real-world applications, we evaluate the effectiveness of
eal-value prediction. To this end, we feed our movie features ( F ) and
he traditional features ( 𝐹 

′
) to the following algorithms to compare the

APE results. Note that, the task is extremely difficult as the range of
OR values is very large ($0-about $1B). 

• PRBO, the employed prediction and ranking model; 
• LR, the linear regression model; 
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Fig. 7. Visualization of participant embeddings w.r.t. each type. 

Fig. 8. t-SNE of screenwriting and casting features. 

Fig. 9. Effectiveness of distribution features. 

37 



Z. Wang, J. Zhang and S. Ji et al. Information Fusion 60 (2020) 25–40 

Table 9 

Comparisons of each predictor based on MAPE. 

BOR range < 1.5 1.5-4.6 4.6–12.3 12.3–46.2 46.2–153.8 > 153.8 Aver. 

LR 𝐹 
′

134% 139% 124% 175% 261% 296% 188% 

F 82% 74% 85% 65% 58% 54% 70% 

LASSO 𝐹 
′

125% 105% 99% 154% 247% 292% 170% 

F 75% 67% 82% 61% 53% 49% 65% 

SVR-RBF 𝐹 
′

223% 278% 282% 384% 447% 491% 351% 

F 162% 154% 144% 165% 159% 171% 160% 

Ada-R2 𝐹 
′

103% 91% 87% 127% 213% 254% 146% 

F 81% 65% 55% 56% 48% 51% 59% 

RF 𝐹 
′

86% 83% 88% 146% 206% 257% 144% 

F 66% 64% 58% 53% 51% 53% 58% 

GBRT 𝐹 
′

121% 104% 096% 139% 214% 265% 157% 

F 86% 68% 58% 52% 47% 43% 59% 

PRBO 𝐹 
′

108% 95% 87% 167% 237% 271% 161% 

F 63% 61% 54% 47% 45% 39% 52% 
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Table 10 

Comparisons of each ranker based on NDCG . 

Methods 

@3 @5 @7 @10 

𝐹 
′

F 𝐹 
′

F 𝐹 
′

F 𝐹 
′

F 

MART 0.51 0.78 0.54 0.91 0.59 0.90 0.68 0.88 

RankNet 0.43 0.59 0.44 0.69 0.53 0.82 0.64 0.80 

CA 0.32 0.55 0.34 0.64 0.46 0.61 0.50 0.62 

RankBoost 0.53 0.74 0.61 0.86 0.62 0.88 0.71 0.89 

PRBO 0.46 0.94 0.48 0.95 0.56 0.96 0.57 0.96 
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• LASSO [85] : the LR model with L1 sparsity normalization; 
• Ada-R2 [86] : the decision tree regression with AdaBoost; 
• SVR-RBF [87] : the support vector regression with the rational

basis function kernel; 
• RF [88] : the random forest; 
• GBRT [89] : the gradient boosting regression tree. 

We set a, b , and 𝜎2 as 0.01 0.01, and 1000 for the PRBO model,
espectively. For Lasso, the constant that multiplies the L1 term is 0.1.
or Ada-R2, the number of estimators is 50, the learning rate is 0.01, and
he maximum depth of the decision tree is 3. For SVR-RBF, the penalty
arameter is 0.1. For RF, the number of trees is 50, and the max depth
s 4. For GBRT, the learning rate is 0.01, and the number of boosting
tages is 100. 

Results . Average MAPE results among six testing sets w.r.t. each
evenue range are reported in Table 9 . In general, the performance of
ethods using F significantly outperform that of 𝐹 

′
. According to the

esults of using our representation, most of the methods can achieve
ood performance. We make two observations: 

(1) BOR range . Clearly, for movies with BOR of more than $12.3M,
all methods obtain a promising result. However, the error is rela-
tively high when the revenue is less than $12.3M, because a part
of these movies, especially in the $1.5M-$12.3M range are pro-
duced by renowned teams yet, are destroyed by bad reputations
[90] that are not easy to be identified before releasing. Another
part of movies are small productions without sufficient data for
modeling them, leading to the relative inaccuracy. 

(2) Prediction method . Because of the limitation of training samples,
the model SVR-RBF shows the weakest performance, whereas our
PRBO, with the help of the ranking information, outperforms all
the baselines. Moreover, our method only deviates about 39% ab-
solute error for these most bankable movies ( > $153.8M), which
is of great value to direct the investment. 

.5.2. Effectiveness of ranking 

In addition, as our PRBO method also provides ranking results, we
urther evaluate the ranking performance using the following baselines
here we both feed our movie feature ( F ) and the traditional feature
 𝐹 

′
) to obtain ranking (NSGD) results. 

• MART [89] : the boosted tree model; 
• RankNet [81] : the neural network-based ranking method; 
• RankBoost [91] : the model combined many “weak ” rankers; 
• Coordinate Ascent (CA) [92] : the model applies coordinate de-

scent for optimization. 

For MART, we set the number of trees, leaves, and threshold candi-
ates as 50, 5, and 10, respectively, and the learning rate as 0.01. For
ankNet, the number of epochs as 100, the number of hidden layers as
38 
, and the number of hidden nodes per layer as 20. For RankBoost, we
et the number of iterations to 300, and the number of threshold candi-
ates as 10. For CA, we set step base as 0.05, step scale as 2.0, tolerance
s 0.001, and slack as 0.001. 

Results . Average NDCG results among all the six testing sets w.r.t.
our n numbers are listed in Table 10 . Supported by our movie feature
ectors, each model indicates a promising ranking performance. As en-
anced by the prediction ability, the PRBO demonstrates the superiority
ver other baselines. 

As a consequence, experimental results reveal the applicability of
he PRBO model in the real-world since the model can both provide two
inds of guaranteed results for investors. 

. Conclusion 

In this paper, we proposed a two-stage machine learning method for
redicting the BOR of a movie before releasing it. We propose utilizing
arious feature learning models for extracting different features from
ulti-modal data of the movie. In particular, we propose a novel dy-
amic heterogeneous network embedding model to collectively learn la-
ent representations of actors, directors, and companies, capturing their
ooperation relationship collectively. We design a deep neural network-
ased model to uncover high-level representations of movie quality from
railers. Then, a movie’s feature vector, consisting of these vectors, is fed
nto a prediction and ranking model to obtain the BOR prediction. The
xperimental results on the Chinese film market data show the advan-
age of both our movie feature vectors and the prediction results. In
articular, the solution only has an error of about 40% absolute per-
entage error for bankable movies in a very large prediction space and
lso offers a promising ranking result. Finally, the real-world applicabil-
ty of the solution drives us to deploy the solution as a business service
o support investment decisions. 

For future work, it is promising to explore NLP technologies in-depth
or these textual data about movies. Second, in this paper, we specified
n embedding method, i.e., MINE, for the participant embedding prob-
em. In the future, it is interesting to investigate a general version of our
odel, such that our model can be employed to wide applications. 
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