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Abstract. Citywide crowd flow analytics is of great importance to smart
city efforts. It aims to model the crowd flow (e.g., inflow and outflow) of
each region in a city based on historical observations. Nowadays, Con-
volutional Neural Networks (CNNs) have been widely adopted in raster-
based crowd flow analytics by virtue of their capability in capturing
spatial dependencies. After revisiting CNN-based methods for different
analytics tasks, we expose two common critical drawbacks in the exist-
ing uses: 1) inefficiency in learning global spatial dependencies, and 2)
overlooking latent region functions. To tackle these challenges, in this pa-
per we present a novel framework entitled DeepLGR that can be easily
generalized to address various citywide crowd flow analytics problems.
This framework consists of three parts: 1) a local feature extraction mod-
ule to learn representations for each region; 2) a global context module
to extract global contextual priors and upsample them to generate the
global features; and 3) a region-specific predictor based on tensor de-
composition to provide customized predictions for each region, which is
very parameter-efficient compared to previous methods. Extensive ex-
periments on two typical crowd flow analytics tasks demonstrate the
effectiveness, stability, and generality of our framework.

1 Introduction

Citywide crowd flow analytics is very critical to smart city efforts around the
world. A typical task is citywide crowd flow prediction [21, 20, 12], which aims to
predict the traffic (e.g., inflows and outflows of every region) for the next time
slot, given the historical traffic observations. It can help the governors conduct
traffic control and avoid potential catastrophic stampede before a special event.
Another important task is to infer the fine-grained crowd flows from available
coarse-grained data sources, which can reduce the expense of urban systems [11,
13]. Other tasks [19, 24] are also actively studied by the community due to the
vital impact of citywide crowd flow analytics.
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Fig. 1. Application of CNNs for citywide crowd flow analytics (Better view in color).

Crowd flow analytics is not trivial as the traffic can be affected by multiple
complex factors in spatio-temporal domains. As shown in Figure 1(a), the inflow
of Region R1 is affected by outflows of nearby regions like R4 as well as distant
regions, which indicates the spatial dependencies. For the temporal dependen-
cies, crowd flow in a region is affected by recent, daily, and weekly historical
traffic. To model the spatio-temporal dependencies, Convolutional Neural Net-
works (CNNs) have been widely used and achieved promising performance. A
pioneering work [21] provided the first CNN-based method (DeepST) for mod-
eling crowd flow, where convolution operators are used to extract spatially near
and distant dependencies and the temporal dependencies are considered in dif-
ferent branches of networks. ST-ResNet [20] further enhanced the performance
of DeepST using residual structures. Very recently, a novel ConvPlus structure
in DeepSTN+ [12] was proposed to learn the long-term spatial dependencies
between two arbitrary regions. These CNN-based methods are characterized by
two components: a complicated ST feature learner to capture features of the
measurements, and a simple task-specific predictor to generate predictions on
all regions. However, they have two main drawbacks:

1) Inefficiency in learning global spatial dependencies. Take traveling in Bei-
jing (Figure 1) as an example. When predicting the inflow of R1 during morning
hours, the outflow of distant regions like R2 needs to be considered, since it is
common that people commute from a distant residence location. As people can
travel around a modern city quickly, it becomes crucial to capture global spatial
dependencies in this task. To this end, existing arts employ two approaches:

– Stacking CNNs to increase receptive fields. Most previous studies like DeepST
and ST-ResNet employ CNNs to capture information locally. But to capture
global spatial dependencies, they have to stack many layers to increase the
receptive field of the network (see Figure 1(b)). This is very inefficient since
relationships between distant regions can only be captured by a near-top layer
with a sufficiently large receptive field to cover all the regions of interest.

– Learning long-range spatial dependencies directly. Instead of gradually increas-
ing receptive fields, DeepSTN+ attempts to capture global spatial depen-
dencies in every layer using ConvPlus structure, which explicitly models all
pairwise relationship between regions. However, a single layer of ConvPlus
without pooling requires O(n2) parameters, where n is the number of regions.
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Fig. 2. Illustration of daily patterns and inflow distribution in three regions.

Constrained by this bloated structure, DeepSTN+ cannot easily go deeper to
learn higher-level representations for each region. Thus, how to learn global
spatial dependencies more efficiently still remains a major challenge.

2) Ignoring latent region functions. Different from pixels in image process-
ing, urban regions have different land functions according to their locations and
surrounding POIs [23, 14]. Recall that R1, R2 and R3 in Figure 1 correspond to
an office area, a residential area and a park zone respectively. From Figure 2(a),
it can be seen easily that their daily patterns are entirely different. For instance,
the office area (R1) usually reaches a traffic peak in the morning, while the
residential area (R2) usually exhibits growth after dinner time. The difference
between their daily flow distributions can also be seen from Figure 2(b). How-
ever, the aforementioned methods have overlooked such varying latent functions
among regions and used a simple predictor with shared parameters to predict
flow for all regions, which inevitably resulted in degraded performance.

To address the above problems, we make the following contributions to the
community. Primarily, we introduce DeepLGR, the first-ever general framework
for raster-based crowd flow analytics. It is named according to how it stratifies
a given task into three major procedures: 1) Local feature extraction to learn
representations for each region within small receptive fields; 2) Global context
aggregation to efficiently capture the global spatial dependencies; and 3) Region-
specific prediction. Respectively,

– we present the first attempt to extract local region representations using
Squeeze-and-Excitation networks (SENet) [5], which excels by including the
channel-wise information as additional knowledge;

– we design a global context module that firstly aggregates the region represen-
tations using a specific pooling method, and then upsample the global priors
back to the original scale to generate global-aware features;

– we introduce a region-specific predictor based on tensor decomposition that
factorizes the region-specific parameters of the predictor into a smaller core
tensor and adjoint matrices.
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In addition, we evaluate our framework on two typical crowd flow analytics
tasks: crowd flow forecasting [21, 20] and fine-grained crowd flow inference [11,
13]. Extensive experiments demonstrate the state-of-the-art performance and
stability achieved by our framework. We have released our code at https://
github.com/yoshall/DeepLGR for public use.

2 Formulation

In this section, we introduce several notations and formulate the problem of
crowd flow analytics. As shown in Figure 1(a), we first follow the previous study
[21] to partition an area of interest (e.g., a city) evenly into a H ×W grid map
based on longitude and latitude where a grid denotes a region. Thus, the crowd
flow at a certain time t can be denoted as a 3D tensor Pt ∈ RH×W×K , where
K is the number of different flow measurements (e.g., inflow and outflow). Each
entry (i, j, k) denotes the value of the k-th measurement in the region (i, j).

Without loss of generality, we use X ∈ RH×W×C and Y ∈ RH′×W ′×D as the
input and output for a crowd flow analytics task, where C and D are the number
of channels. For example, in the task of crowd flow prediction [21, 20, 12], the
input is the historical observations X = {Pi|i = 1, 2, · · · , τ} ∈ RH×W×Kτ and
the target is to predict Y = Pτ+1 ∈ RH×W×K .

3 Methodology

Figure 3 presents the framework of DeepLGR, which can be easily generalized to
all kinds of citywide crowd flow. Compared to the previous methods composed
of an ST feature learner and a shared predictor for all regions, our framework
contains three major components: local feature extraction, global context module
and region-specific predictor. In the first component, we employ the SENet to
learn representations for each region within small (i.e., local) receptive fields from
the input tensor X . To capture global spatial dependencies, we further design the
global context module that considers the full region of interest. It first extracts
global contextual priors from the learned region representations using a specific
pooling method, and then upsamples the priors to the original scale to generate
the global features. Once we obtain features from both local view and global
view, we concatenate them into a tensor and then feed it to the region-specific
predictor to make customized predictions for each region respectively.
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Fig. 3. The pipeline of DeepLGR, which contains three major components.
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For spatial dependencies, our framework employs the first two components
which strategically capture both local-level (neighborhood) and global-level de-
pendencies between regions. Following the mainstream CNN architectures for
citywide crowd flow analytics [21, 20, 12], the temporal dependencies like close-
ness (recent), period (daily) and trend (weekly), if any, are considered in the
channels of input. These temporal dependencies can interact with each other in
the backbone network. Next, we will detail the three components respectively.

3.1 Local Feature Extraction

Recall that both the previous and current state-of-the-arts [20, 12] use residual
blocks to model the spatial dependencies from nearby regions. However, these
methods mainly focus on the spatial dimension and have overlooked the channel-
wise information in the feature maps. Thus, we employ SENet to fuse both
spatial and channel-wise information within small (i.e., local) receptive fields
at each layer, which has proven to be effective in producing compacted and
discriminative features of each grid. Figure 4(a) illustrates the pipeline of the
module for local feature extraction. The input is fed to a convolutional layer for
initialization. Then, we stack M squeeze-and-excitation (SE) blocks in Figure
4(b) for feature extraction, which is composed of three stages: 1) a residual
block [3] for feature learning; 2) a squeeze operation to squeeze global spatial
information into a channel descriptor by global average pooling; 3) an excitation
operation to fully capture the channel-wise dependencies: it first computes the
attention coefficients over each channel via two fully connected layers followed
by a sigmoid function, and then rescales the channels of original inputs by these
weights. Finally, we use an output convolutional layer to transform the obtained
high-level feature maps to the input of the next module. In summary, the SE
structure enables this module to learn better representations for each region
locally within receptive fields.

(a) Residual blocks (ResBlock)

(b) Squeeze-and-Excitation (SE) blocks
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(a) Local feature extraction module

(b) Squeeze-and-Excitation (SE) blocks
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Fig. 4. The pipeline of local feature extraction, where the receptive fields depend on
the number of SE blocks (M). Conv: convolutional layer. ResBlock: Residual block.
Pooling: global average pooling. Dense: fully connected layer.
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3.2 Global Context Module

After local feature extraction, we have designed a specific module that takes the
output of the former component as input to generate global contexts for each
region, so as to capture global spatial dependencies. As depicted in Figure 5, we
first employ spatial pyramid pooling [2] to generate a set of the global priors,
where each prior is a spatially abstract of the original input under different
pyramid scales. This operation allows the module to separate the feature map
into different sub-regions and build pooled representation for different locations.
For example, the 1×1 prior (the red cube) denotes the coarsest level with only
one single value at each channel, which is equivalent to global pooling operation
that covers the whole image. In our experiments, we use a 4-level pyramid (1×1,
2×2, 4×4 and 8×8) to squeeze the input by average pooling.

Once the global priors are obtained, an 1 × 1 convolution layer followed by
a Batchnorm layer [6] is used for dimension reduction of channels from N to
N/8. Inspired by the study [11] aiming at inferring fine-grained crowd flow from
coarse-grained counterparts, we employ the Subpixel block [15] to upsample the
priors to generate new representations with the same size as the original inputs.
For example, after the Subpixel block in 4×4 branch, the output feature maps
growH/4 andW/4 times larger in height and width respectively with the number
of channels unchanged. Different from PSPNet [22] using bilinear interpolation
for upsampling the priors, the Subpixel block considers the relationship between
a super-region and its corresponding sub-regions by introducing a parametric
design. Finally, we concatenate the input (i.e., region representations) with all
levels of global features (i.e., context) as the output of this module.

In summary, this module first converts the input feature map into priors (e.g.,
1×1 prior that encodes the information of all regions) and then upsamples the

Global 
priors

Spatial pyramid pooling

1x1 2x2 3x3 4x4

N N N N

H

N

input

Global 
priors

Conv

N/8
N/8

N/8
N/8

Conv Conv Conv

Subpixel Subpixel Subpixel Subpixel

N/8
W

H

N/8

H

W
N/8

H

W
N/8

H
W

Global 
contexts

W

H

output

Fig. 5. The pipeline of global context module, where Conv denotes a 1 × 1 convolu-
tional layer for dimension reduction, and Subpixel contains a convolutional layer and
a pixelshuffle operation sequentially to upsample the contextual priors. For simplicity,
we use a 4-level pyramid (1×1, 2×2, 3×3 and 4×4) for an illustration.



Revisiting CNNs for Citywide Crowd Flow Analytics 7

priors to learn the global-context-to-region influence (i.e., global spatial depen-
dencies). Compared to the previous attempt (ConvPlus layer in DeepSTN+), our
solution is more efficient and lightweight. Each ConvPlus layer directly models
the pairwise relationships among all regions, thus demanding O(n2) parameters.
With the increase of spatial granularity, it will induce extremely high computa-
tional costs due to the massive parameters. Thus, DeepSTN+ can hardly learn
higher-level representations by simply increasing network depth. In contrast, as
we have separated the procedures of local feature extraction and global context
modeling, we can easily increase the network depth to gain better capacity.

3.3 Region-Specific Predictor

As mentioned before, each urban region has its unique land function. Previous
studies [21, 20, 12] mainly employ a single fully connected layer (equivalent to a
1×1 convolution) with shared weights as the predictor for all regions, which fails
to capture this critical property. Thus, it is necessary to assign region-specific
predictor to each region.

Recall that the high-level feature obtained from last module is Z ∈ RH×W×N ′

and prediction result is Y ∈ RH×W×D, where N ′ = N + N/2. Conventionally,
the number of parameters in a shared fully connected layer is nf = N ′D. To
achieve region-specific predictor, an intuitive solution is to use a customized
fully connected layer for each region. However, it will induce HW × nf param-
eters (denoted as a tensor W ∈ RH×W×nf ), which can easily bloat up as the
granularity increases. Recently, matrix factorization (MF) was used to avoid
these drawbacks [14], in which the parameter tensor W is reshaped to a matrix
W ∈ RHW×nf . As shown in Figure 6(a), the authors from [14] decompose the
weight matrix W into two learnable low-rank matrices, i.e., region embedding
matrices L ∈ RHW×k and parameter embedding matrices R ∈ Rk×nf . With
the usage of MF, the number of the predictor parameters can be reduced to
(HW + nf )k, where k � nf and k � HW .

Nonetheless, directly flattening the parameter tensor W over the region di-
mension will lose the Euclidean structure of the flow map. For example, near
things are more related than distant things according to the first law of ge-
ography, which indicates near regions should have similar prediction weights.

(a) Matrix Factorization
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Fig. 6. Illustration of matrix factorization and tensor decomposition.
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Instead, we present a new idea for decomposing W using Tensor Decomposition
(TD) [17]. It not only preserves the spatial similarity (dependencies) between re-
gions, but also reduces the amount of parameters. As illustrated in Figure 6(b),
tensor W is decomposed into the multiplication of a core tensor A ∈ Rd1×d2×d3
and three adjoint matrices, where d1, d2, and d3 denote the number of latent
factors for each matrix. The computation is as follows:

W = A×R R×S S×T T, (1)

where ×R stands for the tensor-matrix multiplication; the subscript R is the
corresponding mode of the multiplication. For instance, H = A×R R is Hijk =∑d1
i=1Aijk × Rij . By this, we have changed the optimization target from W

to the core tensor A as well as the three learnable matrices R, S and T. The
core tensor is a low-rank representation summarising both the parametric and
spatial information of the origin tensorW. Compared to MF-based solution [14],
our tensor decomposition can handle the higher-order relationships within the
parameters. In addition, the number of parameters required is d1d2d3 + d1H +
d2W + d3nf . Since d1, d2 and d3 are usually very small, TD can achieve even
much fewer parameters than MF, which is validated in our experiments.

3.4 Optimization

Since our framework is smooth and differentiable everywhere, it can be trained
via the back-propagation algorithm. During the training phase, we use Adam
optimizer to train our model by minimizing the entry-wise mean absolute error
(MAE) between our prediction Ŷ and the corresponding ground truth Y:

L(Θ) =
∥∥∥Y − Ŷ∥∥∥

1
(2)

where Θ denotes all learnable parameters in our framework.

4 Experiments

To validate the generality of DeepLGR, we conduct experiments on two typical
tasks of citywide crowd flow analytics:

– Crowd flow forecasting : This task is to forecast the inflow and outflow of
each region in a city from historical readings. Following the settings of [20],
we consider the temporal dependencies (i.e., closeness, period and trend) in
different channels of input, and the output is the prediction of inflow and
outflow for the next timestamp. Similar to [20], we set the length of closeness
(recent), period (daily) and trend (weekly) to 5, 3, 3.

– Fine-grained flow inference: In this task, we aim to infer fine-grained crowd
flows throughout a city based on coarse-grained observations. We extend the
state-of-the-art method named UrbanFM [11] using our framework. Specifi-
cally, we replace the ResNet-based feature extraction of UrbanFM by our first
component (SENet). Then, we add the global context module and region-
specific predictor after the subpixel blocks in UrbanFM.
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4.1 Experimental Settings

Datasets Two datasets were used in our experiments, including TaxiBJ and
HappyValley. The former is the fine-grained version of the ones used by [20] and
the latter is provided from [11]. Specifically, TaxiBJ consists of four different time
spans (denoted as P1 to P4 with different number of taxicabs and distribution),
while HappyValley is the hourly observations of human flow in a theme park in
Beijing from ten months. The statistics are detailed in Table 1. We select the flow
data between 6am and 11pm to conduct our experiments. Using both datasets,
we evaluate DeepLGR over the two aforementioned tasks: In the first task, we
employ the first 80% data as training set, the next 10% as validation set and
the rest for test set; In the second task, we follow all the experiment settings of
[11], including training, validation and test set partition. The upscaling factors
in TaxiBJ and HappyValley are 4 and 2 respectively.

Evaluation Metrics We employ two widely-used criteria to evaluate our model
from different aspects, including mean absolute error (MAE) and symmetric
mean absolute percentage error (SMAPE). They are defined as:

MAE =
1

z

z∑
i=1

|yi − ỹi| , SMAPE =
1

z

z∑
i=1

|yi − ỹi|
|yi|+ |ỹi|

,

where y and ỹ are ground truth and predicted value respectively; z is the total
number of all entries. Smaller metric scores indicate better model performance.

Baselines In the first task, we compare our framework with heuristics, time
series methods and CNN-based baselines. Specifically, a naive method (Last)
simply uses the last observation as the prediction result, and another heuristic
(CA) leverages the closeness property to predict the future crowds by averaging
the values from the previous 5 time steps. ARIMA is a well-known model
for forecasting future values in a time series. Besides, the CNN-based baselines
(including DeepST [21], ST-ResNet [20], ConvLSTM [15] and DeepSTN+
[12]) have been introduced in Section 1.

Table 1. Dataset description.

Dataset TaxiBJ HappyValley

Data type Inflow and outflow Staying flow
Resolution (128, 128) (50,100)
Sampling rate 30 minutes 1 hour

P1: 07/01/2013-10/31/2013
Time Span P2: 02/01/2014-06/30/2014 01/01/2018-
(mm/dd/yyyy) P3: 03/01/2015-06/30/2015 10/31/2018

P4: 11/01/2015-03/31/2016
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The second task was introduced only very recently by [11], where the au-
thors presented the state-of-the-art method named UrbanFM. It considers the
unique characteristics of this task, including the spatial hierarchy and external
factors. Other strong baselines included in this work are related to image super-
resolution, such as VDSR [7] and SRResNet [8]. We mainly use these three
baselines for model comparison in this task. It is worth noting that all baselines
are implemented with their default settings in both tasks.

Training Details & Hyperparameters Our framework, as well as the above
baselines, are fully implemented by Pytorch 1.1.0 with one GTX 2080TI. During
the training phase, the learning rate is 0.005 and the batch size is 16. For the
number of stacked SE blocks (denoted as M) in the first component, we conduct
a grid search over {3, 6, 9, 12}. For simplicity, we use the same hidden dimension
(i.e., number of channels) at each 3×3 convolutional layer in SE blocks, and
conduct a grid search over F = {32, 64, 128}.

4.2 Results on Crowd Flow Forecasting

Model Comparison Here, we compare our framework with the baselines over
the two datasets. We report the result of DeepLGR with M = 9 and F = 64 as
our default setting. Further results regarding different M will be discussed later.

Table 2. Prediction results on TaxiBJ over different time spans (P1-P4), where the
bold number indicates the best performance of the column. We train and test each
method five times, and present results using the format:“mean ± standard deviation”.

Method
P1 P2

MAE SMAPE MAE SMAPE

CA 3.43 0.290 4.23 0.288
Last 3.39 0.242 4.09 0.241
ARIMA 3.08 0.403 3.53 0.385
DeepST 2.59 ± 0.05 0.41 ± 0.01 2.94 ± 0.05 0.39 ± 0.01
ST-ResNet 2.53 ± 0.05 0.38 ± 0.05 2.93 ± 0.06 0.34 ± 0.07
ConvLSTM 2.42 ± 0.02 0.41 ± 0.01 2.77 ± 0.01 0.39 ± 0.01
DeepSTN+ 2.33 ± 0.04 0.35 ± 0.08 2.67 ± 0.02 0.32 ± 0.05
DeepLGR 2.15 ± 0.00 0.19 ± 0.00 2.46 ± 0.00 0.18 ± 0.00

Method
P3 P4

MAE SMAPE MAE SMAPE

CA 4.17 0.286 2.81 0.286
Last 4.07 0.240 2.82 0.239
ARIMA 3.68 0.363 2.61 0.420
DeepST 2.97 ± 0.04 0.39 ± 0.01 2.16 ± 0.04 0.43 ± 0.02
ST-ResNet 2.91 ± 0.06 0.33 ± 0.05 2.15 ± 0.04 0.32 ± 0.06
ConvLSTM 2.87 ± 0.01 0.39 ± 0.01 2.09 ± 0.02 0.43 ± 0.02
DeepSTN+ 2.82 ± 0.04 0.38 ± 0.05 2.05 ± 0.01 0.34 ± 0.05
DeepLGR 2.56 ± 0.02 0.19 ± 0.04 1.84 ± 0.01 0.19 ± 0.00
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Table 2 shows the experimental results over P1 to P4 in TaxiBJ. We can ob-
serve that our framework clearly outperforms all baselines over both metrics. For
instance, DeepLGR shows 10.2% and 44.1% improvements on MAE and SMAPE
beyond the state-of-the-art method (DeepSTN+) in P4. The conventional model
ARIMA performs much worse than deep learning models in these datasets, since
it only considers the temporal dependencies among time series. Apart from the
CNN-based methods, ConvLSTM advances DeepST and ST-ResNet because of
the positive effect of its LSTM structure. However, it overlooks the global spatial
dependencies between regions, which leads to inferiority compared to DeepSTN+
and DeepLGR. Another interesting observation is that the heuristics including
CA and Last achieves much less SMAPE than previous CNN-based methods.
Recall that SMAPE prefers to penalize the errors in regions with lower flow
volumes. This observation reveals the importance of the temporal dependencies
in such regions since CA and Last only consider the temporal closeness for fore-
casting. Only our method performs better than the heuristics on SMAPE with
the usage of tensor decomposition, which will be detailed in the ablation study.
Last but not least, DeepLGR is also more stable than the baselines according to
the standard deviation observations.

Compared to TaxiBJ with a citywide scale, HappyValley focuses on a local
area with a highly skewed flow distribution, where only a few regions contain
dense populations. Table 3 presents a comprehensive comparison of each model
over this dataset. First, it can be seen easily that our framework shows great su-
periority against the CNN-based methods and slightly outperforms ConvLSTM
in terms of both metrics, while using as little as 6.2% of the amount of param-
eters required in the state-of-the-art method (DeepSTN+). This fact demon-
strates that our model is more practical than other CNN-based solutions in
real-world systems. Second, similar to the results in TaxiBJ, DeepLGR performs
more stable than the baselines according to the standard deviation in multiple
experiments. Third, the heuristic method (Last) achieves the lowest SMAPE but
the second-highest MAE, which can prove the skew distribution of this dataset.
Last, the fact that DeepLGR and DeepSTN+ outperform ST-ResNet verifies the
necessity of modeling global context in such a small area.

Table 3. Prediction results of various methods on the HappyValley dataset, where
#Params is the number of parameters and M denotes million.

Method #Params MAE SMAPE

CA x 2.23 0.46
Last x 2.20 0.38
ARIMA 0.00M 2.14 0.47
DeepST 0.59M 2.02 ± 0.05 0.56 ± 0.05
ST-ResNet 2.73M 1.98 ± 0.05 0.53 ± 0.04
ConvLSTM 5.98M 1.86 ± 0.01 0.48 ± 0.10
DeepSTN+ 15.70M 1.92 ± 0.01 0.54 ± 0.06
DeepLGR 0.97M 1.84 ± 0.01 0.40 ± 0.02
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Ablation Study To further investigate the effectiveness of each component, we
compare DeepLGR with its variants over TaxiBJ-P1. For simplicity, we use the
terms as local, global and TD to denote the three components in our framework
respectively. Based on them, DeepLGR and its variants can be denoted as:

– local+global+TD: The original implementation of DeepLGR.
– local+global+MF: To show the effectiveness and lightweight property of

TD against MF, we replace TD in the region-specific predictor by MF.
– local+global: Similar to the CNN-based baselines [21, 20, 12], this variant

uses shared parameters (i.e., not region-specific) as the predictor.
– local+TD: The variant of DeepLGR without global context module.
– local+MF: We first remove global context module from DeepLGR and then

replace TD in region-specific predictor by MF.
– local+bilinear: We employ bilinear interpolation rather than Subpixel block

to upsample the global priors, so as to obtain new global representations.
– local: The last two components are removed from DeepLGR.

Table 4 illustrates the variant comparison over TaxiBJ-P1. We discuss the
effects of each model component as follows:

– Local feature extraction: A powerful ST feature extractor enables the capabil-
ity of extracting useful representations for each region. Compared to previous
attempts like ST-ResNet based on residual blocks, our feature extraction mod-
ule largely improves the performance (e.g., local vs. ST-ResNet in Table 2 and
4). We further investigate the effects of the number of SE blocks in this mod-
ule. As shown in Figure 7, it achieves the best performance when M = 6 in
the test set. Noted that we choose M = 9 as the default setting of DeepLGR
because of its best performance on the validation set rather than the test set.
Besides, we replace the SE blocks in this module by residual blocks to show
the advantages of SE blocks, where the results are also in Figure 7.

– Global context module: As a vital component in our framework, this module
provides the global information to boost the performance. As illustrated in
Table 4, the comparison between local and local+global (also local+TD and
local+global+TD) can verify the effectiveness of this module. With the usage
of Subpixel block with a parametric design, local+global brings an improve-
ment beyond local+bilinear.

Table 4. Results of different variants over TaxiBJ-P1 (trained/tested five times).

Variants #Params MAE SMAPE

local 0.72M 2.21 ± 0.01 0.37 ± 0.03
local+MF 0.89M 2.19 ± 0.02 0.36 ± 0.03
local+TD 0.74M 2.19 ± 0.01 0.32 ± 0.03

local+bilinear 0.73M 2.20 ± 0.02 0.35 ± 0.03
local+global 2.30M 2.17 ± 0.02 0.29 ± 0.03

local+global+MF 2.46M 2.15 ± 0.00 0.27 ± 0.01
local+global+TD 2.31M 2.15 ± 0.00 0.19 ± 0.00
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Fig. 7. SE vs. residual block over P1, where the shade area is the standard deviation.

– Region-specific predictor : This module is used to determine the region-specific
parameters for predictions. Thus, we compare it with a shared fully con-
nected layer with nf parameters (local+global), and the matrix decomposition
method. From the last three rows of Table 4, we observe that TD demonstrates
very competitive accuracy while using as little as 6.3 % of the number of pa-
rameters required in MF (i.e., 0.01M vs. 0.16M). Moreover, TD significantly
outperforms MF over SMAPE since it allows the model to capture spatial
dependencies between regions.

4.3 Results on Fine-grained Flow Inference

Experimental results on the second task have demonstrated the superiority of our
framework again. From Table 5, we have the following observations: 1) UrbanFM
equipped with our framework (denoted as local+global+TD) shows considerable
improvements against its original version on both datasets, validating its great
generality in different applications. For example, DeepLGR achieves 5.8% lower
MAE and 28.0% lower SMAPE than UrbanFM in the TaxiBJ-P1 dataset. 2)
The three components of DeepLGR are effective according to the advancement
of performance (only except local vs. UrbanFM in HappyValley). 3) Compared
to VDSR and SRResNet for image-resolution , UrbanFM outperforms them by
considering the domain knowledge, i.e., spatial hierarchy and external influence
[11]. From above discussions, we can see that existing approaches like UrbanFM
can be easily integrated with our framework.

Table 5. Results of various models for fine-grained flow inference. We train/test each
method five times, and present results using the format:“mean ± standard deviation”.

Method
TaxiBJ-P1 HappyValley

MAE SMAPE MAE SMAPE

VDSR 2.23 ± 0.05 0.54 ± 0.03 2.13 ± 0.04 0.61 ± 0.02
SRResNet 2.20 ± 0.05 0.52 ± 0.03 1.89 ± 0.05 0.61 ± 0.03
UrbanFM 2.07 ± 0.03 0.25 ± 0.02 1.80 ± 0.02 0.41 ± 0.02

local 1.98 ± 0.01 0.20 ± 0.01 1.83 ± 0.01 0.43 ± 0.01
local+global 1.96 ± 0.00 0.20 ± 0.01 1.78 ± 0.01 0.38 ± 0.01
local+global+TD 1.95 ± 0.00 0.18 ± 0.01 1.76 ± 0.01 0.35 ± 0.00
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Fig. 8. Convergence speed of various methods over P1.

We further investigate the efficiency of DeepLGR. Figure 8 plots the MAE
on the validation set during the training phase using TaxiBJ-P1. Remarkably,
UrbanFM and DeepLGR converge much smoother and faster than the others
as shown in Figure 8(a). A more detailed comparison between UrbanFM and
DeepLGR lies in Figure 8(b). From this figure, we can see that DeepLGR con-
verges at iteration 3540 (epoch 37) while UrbanFM early-stops at iteration 7720
(epoch 81). This fact demonstrates that our framework can also accelerate the
training phase of existing method.

5 Related Work

Citywide crowd flow analytics has attracted considerable attention of researchers
in recent years. A series of studies have explored forecasting millions or even
billions of individual mobility traces [16, 1]. Different from analyzing crowd be-
haviors on an individual level, several works started to forecast citywide crowd
flow by aggregating the crowds into corresponding regions [10, 4]. Among them,
statistical learning was employed to capture inter-region relationship. With inter-
est in obtaining fine-grained regional data, several studies [11, 24, 13] presented
techniques to recover fine-grained crowd flow from coarse-grained data.

Recently, there have been many attempts focusing on end-to-end deep learn-
ing solutions such as CNNs for citywide crowd flow analytics. A pioneering
study by [21] presented a general framework based on CNNs for citywide crowd
flow prediction. By using a CNN architecture, their method can capture the
spatio-temporal correlations reasonably and accurately. To overcome the gradi-
ent vanishing problem, they further integrated their framework using deep resid-
ual learning [20]. Similar insight has been applied in taxi demand prediction [19].
Moreover, there are also several studies [25, 18] using RNNs to model the peri-
odic temporal dependencies. Very recently, a ConvPlus structure [12] showed the
state-of-the-art performance by directly modeling the long-range spatial depen-
dencies between region pairs. However, as detailed in Section 1, these methods
are very inefficient in learning global spatial dependencies and none of them
considers latent land function. To tackle these drawbacks, we have presented a
general framework that can be easily generalized to all kinds of crowd flow data.
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6 Conclusion and Future Work

In this paper, we have carefully investigated existing CNN-based methods for
citywide crowd flow analytics, and exposed their inefficiency in capturing global
spatial dependencies and incapability in generating region-specific predictions.
Based on our discovery, we have presented the DeepLGR framework which de-
couples the local feature extraction and global context modeling, and provides a
parameter-efficient solution for customizing regional outputs. We have evaluated
DeepLGR over two real-world citywide crowd flow analytics tasks. In the predic-
tion task, DeepLGR outperforms the state-of-the-art (DeepSTN+) by average
8.8% and 45.9% on TaxiBJ dataset, and 4.2% and 25.9% on HappyValley dataset
in terms of MAE and SMAPE metrics respectively. Moreover, our framework is
more lightweight than the state-of-the-art methods, which is very important in
real practice. In the second task, we have verified that the existing approach can
be easily integrated with our framework to boost its performance. In the future,
we will explore two directions. First, we notice that manually designing neural
networks requires amount of expert efforts and domain knowledge. To overcome
this problem, we can follow a very recent study [9] to study Neural Architecture
Search (NAS), which can automatically construct a general neural network for
diverse spatio-temporal tasks in cities. Second, we will extend our framework to
a much broader set of spatio-temporal tasks by using graph convolutions.
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