
You Are How You Use:
Catching Gas Theft Suspects among Diverse Restaurant Users

Xiaodu Yang1,2,3,4, Xiuwen Yi3,4,5∗, Shun Chen1,3,4, Sijie Ruan6,3,4
Junbo Zhang3,4,1, Yu Zheng3,4,1,6, Tianrui Li1

1 Artificial Intelligence Institute, Southwest Jiaotong University, China 2 CentraleSupélec, Université Paris-Saclay, France
3 JD Intelligent Cities Research, China 4 JD Intelligent Cities Business Unit, JD Digits, China

5 Department of Computer Science and Technology, Tsinghua University, China
6 School of Computer Science and Technology, Xidian University, China

{xiaodu.yang,xiuwenyi}@foxmail.com;sjruan@stu.xidian.edu.cn
{bhchenshun,msjunbozhang,msyuzheng}@outlook.com;trli@swjtu.edu.cn

ABSTRACT
Gas theft of restaurants is a major concern in the gas industry,
which causes revenue losses for gas companies and endangers the
public safety seriously. Traditional methods of gas theft detection
highly rely on active human efforts that are extremely ineffective.
Thanks to the gas consumption data collected by smart meters, we
can devise a data-driven method to tackle this issue. In this paper,
we propose a gas-theft detection method msRank to discover suspi-
cious restaurant users when only scarce labels are available. Our
method contains three main components: 1) data pre-processing,
which filters reading noises and excludes data-missing or zero-use
users; 2) normal user modeling, which quantifies the self-stable
seasonality of normal users and distinguishes them from unstable
ones; and 3) gas-theft suspect detection, which discovers gas-theft
suspects among unstable users by RankNet-based suspicion scoring
on extracted deviation features. By using detected normal users as
negative samples to train RankNet, the component of normal user
modeling and that of gas-theft suspect detection are seamlessly
connected, overcoming the problem of label scarcity. We conduct
extensive experiments on three real-world datasets, and the results
demonstrate advantages of our approach. We have deployed a sys-
tem GasShield which provides a gas-theft suspect list weekly for a
gas group in northern China.

CCS CONCEPTS
• Computing methodologies → Anomaly detection; • Infor-
mation systems→ Information systems applications.
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1 INTRODUCTION
The scale of Chinese catering market has reached 4.2 trillion in
2019 [1], and restaurants account for a significant part of gas users.
However, motivated by saving operation costs, the phenomena
of gas theft widely exists among restaurant users. To report less
charged gas consumption than the actual volume they have used,
gas-theft users tend to modify or even destroy gas equipment. Fig-
ure 1(a) and (c) show a normal meter and a meter modified by
gas-theft users respectively. Given the large number of restaurant
users, detecting their gas theft behaviors is of considerable value
from the following two aspects. For natural gas suppliers, large-
scale gas thefts lead to tremendous revenue losses. For the public,
gas theft means can cause gas leakage or even explosions which
endanger the public safety seriously, especially when restaurants
normally locate in crowded areas of business or residence.

Traditional methods of gas theft detection highly rely on ac-
tive human efforts, like on-site inspections conducted by operators.
Without specific target suspects, these methods can only cover ei-
ther a small portion of users randomly or all users at low inspection
frequency, which are rather ineffective and lagged.

Figure 1: Data-driven gas theft detection.
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Fortunately, the extensively deployed smart meters report mas-
sive gas consumption readings periodically as shown in Figure 1(b)
and (d), which brings us an opportunity to devise a data-driven
method for detecting gas-theft restaurant users.

However, to detect gas-theft restaurants based on real-world
data is non-trivial because of the following two challenges:

• Limited labels. Gas theft detection can be categorized as one
type of utility fraud detection problems. Existing methods in this
domain are either supervised [4, 7, 8, 21] or semi-supervised [13],
which heavily rely on the fully labeled data that are synthetic or
collected from tens of thousands of on-site inspections [6, 7]. But
as in most industrial scenarios, we only have scarcely labeled
data. And we cannot collect more labels limited by the high cost
of on-site inspections.

• Complex gas-theft behaviors. Gas-theft users mostly break
the gas equipment, which causes abnormal gas consumption
readings occurring at any time in unpredictable forms without
consistent patterns, as shown in Figure 1(d). In [8, 13, 21], the
data of utility fraud users is synthetic, which is too simple to
capture actual gas-theft behaviors of restaurant users. Moreover,
as shown in Figure 1(b), utility fluctuations are inevitable in real
life, which are likely to raise false alarms by general methods of
time series anomaly detection [17, 24]. Because these methods
are usually sensitive to point-wise anomalies.

In this paper, we propose a gas-theft detection method msRank
to discover suspicious restaurant users when only scarce labels are
available. Our method contains three main components: 1) data pre-
processing, which filters reading noises and excludes data-missing
or zero-use users; 2) normal user modeling, which quantifies the
self-stable seasonality of normal users and distinguishes them from
unstable ones; and 3) gas-theft suspect detection, which discovers
gas-theft suspects among unstable users by RankNet-based suspi-
cion scoring on the extracted deviation features. The component
of normal user modeling and that of gas-theft suspect detection
are connected seamlessly to overcome the label scarcity. By mod-
eling normal users, we not only decrease the overall complexity
by narrowing the suspect scope, but also provide normal users as
negative samples. The suspect detection then adopts normal users
along with gas-theft labels to construct positive-negative sample
pairs for training RankNet. Our contributions are four folds:

• We provide the first attempt to detect gas-theft restaurant users
by mining gas consumption data. And we overcome the problem
of label scarcity which commonly exists in industrial scenarios.

• We propose a normal user modeling module to quantify the self-
stable seasonality of normal users and distinguishes them from
unstable ones. We also propose a gas-theft suspect detection
module to discover suspicious users among unstable ones by
RankNet-based suspicion scoring.

• We evaluate ourmsRank extensively on three real-world datasets
of gas consumption. Experiment results demonstrate the advan-
tages of our method which outperforms the best baseline by 25%
as for the top 10% hit rate.

• We have deployed a system GasShield, providing the gas-theft
suspect list weekly for a gas group in northern China. Gas thefts
can thus be discovered in the early stage with higher accuracy.

Figure 2: Framework of𝑚𝑠𝑅𝑎𝑛𝑘 .

2 OVERVIEW
2.1 Problem Definition
Given hourly gas consumption records𝐶𝑖 = (𝑐1

𝑖
, 𝑐2
𝑖
, ..., 𝑐𝑇

𝑖
) of historical

𝑇 time steps for each restaurant user𝑢𝑖 ∈ U, we aim to detect whether
the user has gas theft behaviors.

2.2 Framework
Based on expert experience, gas theft means cause mainly three
types of anomalies in gas consumption data: 1) missing data, 2) zero
use, and 3) irregular patterns. The first two can be easily identified,
while the third one is quite hard to detect. Therefore, we detect
data-missing or zero-use users in data pre-processing, and then
handle the third gas-theft behaviors by a two-step solution. The
framework of our method msRank is illustrated in Figure 2.
Data Pre-processing. This component takes raw data and per-
forms three tasks: 1) Noise Filtering, which removes readings of
unrealistic magnitudes; 2) Data-missing User Exclusion, which ex-
cludes users of high data miss rate; 3) Zero-use User Exclusion, which
excludes users of high data zero rate.
Normal User Modeling. This component takes pre-processed
users with cleaned data and performs two tasks: 1) mode sequence
construction, which converts gas consumption time series into
bi-seasonal mode sequences; and 2) entropy-based stability detec-
tion, which calculates the mode entropy ModeEn based on mode
sequences, and then distinguishes normal users from unstable ones
according to ModeEn.
Gas-theft Suspect Detection. This component extracts finer
-grained features to portray the deviation degree of gas consumption
from intrinsic self-stability, and ranks unstable users detected in
the previous step based on their gas-theft suspicion scores. The
suspicion score is predicted by a RankNet model, which is trained
with gas-theft labels and detected normal users. Users are regarded
as gas-theft suspects if their scores are above a threshold determined
by the percentage of potential gas thefts provided by experts.

3 DATA PRE-PROCESSING
In this section, we pre-process gas consumption data by cleaning
noises in raw readings and excluding data-missing or zero-use
users. As shown in Figure 3, the two types of users take 38% and
16% respectively among gas-theft labels, indicating that such data
quality problems can potentially reflect gas theft behaviors.



Figure 3: Anomaly type distribution of gas-theft labels.

Noise Filtering. For restaurant users, the scale of gas consumption
volume depends on the gas-burning appliances they use, which
are mostly cookers. As Figure 4(a) shows, daily max hourly uses of
restaurants rarely exceed 100𝑚3. However, some faulted gas meters
may record extremely large values out of realistic magnitudes. So
we remove hourly gas consumption readings larger than 100.
Data-missing User Exclusion. Gas-theft users usually break gas
equipment, which can cause the collected data missing frequently.
As Figure 4(b) shows, for the dominant majority of restaurants,
their daily miss rates are lower than 5%, while a tiny part of users
lack more than 90% data in some days. So we exclude users with
daily miss rates higher than 25% for more than 7 days.
Zero-use User Exclusion. Readings containing many zero values
indicate that the restaurant seldom uses gas or steals gas by forcing
meters to stop recording. As Figure 4(c) shows, daily zero rates
are mainly lower than 90% and concentrate around 50%, which is
consistent with opening hours of restaurants. However, some users
have daily zero rates higher than 90%. So we exclude users with
daily zero rates higher than 90% for more than 7 days.

(a) Daily Max Hourly Use (b) Daily Miss Rate (c) Daily Zero Rate

Figure 4: Distribution of data quality metrics.

After data pre-processing, remaining restaurant users with data of
higher quality will be analyzed in following components.

4 NORMAL USER MODELING
In this section, with the data cleaned in Sec. 3, we aim to find normal
users with high confidence which take the majority, and to tell these
normal users apart from unstable users which include gas-theft
suspects. So that we not only decrease the overall complexity by
narrowing the scope of suspects, but also provide negative samples
for the gas-theft suspect detection later.
Challenges. With dozens of normal users provided by experts as
shown in Figure 5, we observe that bi-seasonal patterns repeat
steadily in their hourly gas consumption, where the daily patterns
are nested in the weekly ones. However, it is non-trivial to model
such self-stability of normal users due to two reasons:

Figure 5: Diversity of normal gas consumption behaviors.

• Normal users exhibit diverse patterns, while few of them have
been labeled by on-site inspections in the past. So it is impractical
to do classification directly with such scarce normal labels.

• Utility fluctuations, like amplitude shifts, spikes and dips, are
inevitable in real life and will disable conventional measures.
For example, the Autocorrelation Coefficient (ACF) [11], widely
used to quantify the self-similarity of periodic time series, can be
affected by such fluctuations. The three users in Figure 5 are all
self-stable, while given their gas consumption of the same period,
the ACFs of Restaurant A,C are evidently lower than that of B.

Insights. We propose to find high-confidence normal users by
examining their self-stability of gas consumption modes, inspired
by our observations from data. Though the three restaurants in
Fig. 5 have different gas consumption behaviors and the normal user
in Fig. 1 appears occasional fluctuations colored in orange, certain
seasonal patterns repeat steadily for each of them. It is consistent
with the common sense that the gas consumption patterns of a
restaurant is decided by its business mode, and is thus fixed.
Main Idea. To characterize the self-stability of gas consumption
patterns for each restaurant, and to identify normal users, the pro-
cedure of normal user modeling is devised as shown in Figure 6,
which consists of two main steps: 1) Mode Sequence Construction,
which first generates seasonal gas consumption patterns for each
user, then clusters patterns of all users to discover gas consumption
modes that commonly exist, and finally converts gas consump-
tion time series into mode sequences for each user based on the
discovered modes; 2) Entropy-based Stability Detection, which cal-
culates the mode entropy𝑀𝑜𝑑𝑒𝐸𝑛 of each user based on its mode
sequences, and identify normal users according to it.

Figure 6: Normal user modeling.



4.1 Mode Sequence Construction
In this step, we want to convert time series of hourly gas con-
sumption into bi-seasonal mode sequences. So that the generated
sequences can be insensitive to utility fluctuations and focus on
the key information of pattern self-stability, using which we detect
normal users further.

To avoid being disturbed by utility fluctuations and reading
noises, we should make the mode sequences coarse-grained, where
each mode represents a typical daily or weekly gas consumption
behavior. An intuitive idea is to segment raw time series by day and
by week, and then cluster them to find intra-user modes. However,
recall that we can only use the data of limited length to detect
whether the user is a gas theft suspect. For each user, its seasonal
segments are too limited to discover general modes, which makes
it difficult to judge individually whether they are reasonable.

Therefore, the main idea of mode sequence construction is that
we first discover daily andweeklymodes from behaviors of all users;
and then for each user, we generate the mode sequence based on the
widely-shared typical gas consumption modes. It mainly contains
three steps: 1) Pattern Generation, which generates the bi-seasonal
gas consumption patterns of each user; 2) Pattern Clustering, which
clusters patterns of all users, and regards cluster centroids as typical
gas consumption modes; and 3) Mode Assignment, which converts
gas consumption time series into bi-seasonal mode sequences based
on the discovered daily and weekly modes.
Pattern Generation. As described above, a normal user can still
have fluctuating records. To obtain robust gas consumption modes,
we generate gas consumption patterns of each user (i.e., each clus-
tering sample) by averaging its gas consumption. Specifically, we
generate the daily pattern and theweekly pattern for each restaurant
user 𝑢𝑖 . Because gas consumption behaviors might be different on
workdays and on weekends, the daily pattern is further divided into
the workday pattern and the weekend pattern:

• Daily pattern of workdays P𝑤𝑑
𝑖

∈ R24, which is the averaged
hourly gas consumption over workdays for a given user.

• Daily pattern of weekends P𝑤𝑒
𝑖

∈ R24, which is the averaged
hourly gas consumption over weekends for a given user.

• Weekly pattern P𝑤
𝑖

∈ R7, which is the averaged daily gas con-
sumption over days in a week for a given user.

The generated patterns characterize intrinsically the gas con-
sumption behaviors of each restaurant. However, two restaurants of
the same business mode can still be dissimilar in the volume of gas
consumption. To remove the amplitude differences, we normalize
all patterns using the min-max strategy.
Pattern Clustering. In this step, we cluster the generated and
normalized patterns of all users, to obtain gas consumption modes
based on cluster centroids. As illustrated in Figure 6, the workday
daily patterns P𝑤𝑑 = {P𝑤𝑑

𝑖
|∀𝑢𝑖 ∈ U} and the weekend daily pat-

terns P𝑤𝑒 = {P𝑤𝑒
𝑖

|∀𝑢𝑖 ∈ U} are clustered together to discover daily
modes; the weekly patterns P𝑤 = {P𝑤

𝑖
|∀𝑢𝑖 ∈ U} are clustered to

discover weekly modes. Since the gas consumption modes are lim-
ited considering Chinese dietary habits, 𝑘Means clustering [15] is
adopted, where the cluster number 𝑘𝑑 and 𝑘𝑤 of daily and weekly
modes are determined according to silhouette coefficients (SC) [18].

(a) Daily Cluster Number (b) Typical Daily Modes

(c) Weekly Cluster Number (d) Typical Weekly Modes

Figure 7: Illustration of pattern clustering.

The SCs are the best when 𝑘𝑑 = 3 and 𝑘𝑤 = 2 as shown in Fig-
ure 7(a) and 7(c) respectively. The obtained cluster centroids are
the gas consumption modes that we look for.

Figure 7(b) shows the three corresponding daily modes:
• 𝑀𝑑

1 : They supply both lunches and dinners but no breakfast, like
restaurants of hot pots which are too spicy for breakfast.

• 𝑀𝑑
2 : They supply mainly breakfast with minor traffic appearing

near the evening peak, like some snack stands selling steamed
buns, dumplings, noodles, etc.

• 𝑀𝑑
3 : They supply three meals in a day, like Cantonese morning

tea restaurants, fast food restaurants, etc.
Figure 7(d) shows the two corresponding weekly modes:
• 𝑀𝑤

1 : They mainly supply working meals, like restaurants nearby
office buildings where the traffic drops sharply on weekends.

• 𝑀𝑤
2 : Their traffic is similar in a week, with slightly increasing

on weekends perhaps also on Friday. Since people may prefer to
dine out for leisure on days off.

ModeAssignment. In this step, we construct dailymode sequences
and weekly mode sequences using the gas consumption modes
discovered above. The main idea is that, for each user, we first
segment the time series of hourly gas consumption by the day,
and then assign each slice to its nearest daily mode based on the
Euclidean distance. As shown in Figure 6, we obtain the daily
mode sequenceM𝑑

𝑖
=< 𝑚𝑑

1 ,𝑚
𝑑
2 , · · · ,𝑚

𝑑
𝐷

>, where𝑚𝑑
𝑝 ∈ [1, ..., 𝑘𝑑 ]

and 𝐷 is the total of days. Similarly, the weekly pattern sequence
M𝑤

𝑖
=< 𝑚𝑤

1 ,𝑚
𝑤
2 , · · · ,𝑚

𝑤
𝑊

> are generated from the daily gas con-
sumption, where𝑚𝑤

𝑞 ∈ [1, ..., 𝑘𝑤] and𝑊 is the total of weeks.

4.2 Entropy-based Stability Detection
In this step, we aim to quantify the self-stability of mode sequences,
in order to distinguish normal users from unstable ones. Since nor-
mal restaurants exhibit stable modes of gas consumption, while
patterns of gas-theft users are chaotic and random, it is natural
to devise an entropy-based method to quantify the self-stability
of mode sequences. Therefore, we first define an entropy-based
method to quantify behaviors of stable users based on their gen-
erated daily and weekly mode sequences, and then regard users
whose mode entropy is below a specific threshold as normal ones.



(a) #. Daily Mode Distribution (b) #. Weekly Mode Distribution

Figure 8: Insight of designing𝑀𝑜𝑑𝑒𝐸𝑛.

Given the daily mode sequence of a user M𝑑
𝑖
, the entropy 𝐻

in Eq.1 quantifies how chaotic the mode sequence is. The more
consistent modesM𝑑

𝑖
contains, the smaller 𝐻 (M𝑑

𝑖
) will be.

𝐻 (M𝑑
𝑖 ) = −

𝑘𝑑∑
𝑥=1

𝑝𝑥 𝑙𝑛(𝑝𝑥 ) (1)

where 𝑝𝑥 is the occurrence proportion of daily mode 𝑘𝑑𝑥 inM𝑑
𝑖
.

However, such entropy is insufficient to capture the stability
of restaurant users. We say a user has 𝑛 daily gas consumption
modes if his/her most frequent 𝑛 daily modes in M𝑑

𝑖
take more

than 75% in the sequence, where 𝑛 is the minimum number of
modes that satisfies the condition. According to Figure 8(a), users
with single daily mode can cover only 86% restaurants, while the
percentage of gas-theft users are much smaller according to the
domain knowledge. If we apply the entropy directly to quantify the
mode stability of users, many normal users would be omitted.

Considering that, we design the mode entropy ModeEn, which
treats not only users of single daily mode as normal ones, but also
those of double daily modes with single weekly mode at the same
time. This is inspired by two observations from data:
• For the majority of users, they have at most two daily gas con-
sumption modes. As shown in Figure 8(a), only 86% users exhibit
single daily mode. But if we jointly consider single-mode and
double-mode users, all users can be covered, which implies that
they normally have only one or two daily modes.

• For the majority of users, they have only one weekly gas consump-
tion mode. As shown in Figure 8(b), regardless of the daily mode
number, almost all users have only one weekly mode.
To capture the aforementioned two characteristics, the mode

entropy𝑀𝑜𝑑𝑒𝐸𝑛 is defined as follows:

𝑀𝑜𝑑𝑒𝐸𝑛 (M𝑑
𝑖 ,M

𝑤
𝑖 ) =𝐻 (M𝑑

𝑖 ) − 𝛼 · 1(𝐻 (M𝑤
𝑖 ) == 0&𝐻 (M𝑑

𝑖 ) > 𝛼) (2)

where 1(·) is an indicator function which returns 1 if the condition
holds, and 0 otherwise. And 𝛼 is an entropy shifting parameter.

The𝑀𝑜𝑑𝑒𝐸𝑛 is able to quantify the stability of both single daily
mode users and double daily mode users with stable weekly mode.

Figure 9: Distribution of𝑀𝑜𝑑𝑒𝐸𝑛.

For single mode users, their 𝐻 (M𝑑
𝑖
) are small, and the entropy

shift will not be activated. For double mode users, their 𝐻 (M𝑑
𝑖
)

are relatively large, since M𝑑
𝑖
contains 2 modes mainly. And the

entropy shifting parameter 𝛼 will be applied only if𝐻 (M𝑤
𝑖
) = 0, i.e.,

the weekly mode is totally stable. In this way, for both single and
double daily mode users,𝑀𝑜𝑑𝑒𝐸𝑛 will be small if they are stable.

The entropy shifting parameter 𝛼 is set equal to the entropy of a
daily mode sequence which is exactly binary for being workday-
or-not over its time span. And we only shift the entropy for mode
sequences in which the double daily modes follow the workday-
or-not pattern. For example, in our evaluation dataset, there are 19
workdays and 12 days-off (including the Chinese National Day) in
October 2019. Therefore, 𝛼 is set to − 19

31 ln
19
31 − 12

31 ln
12
31 = 0.67.

Figure 9(a) shows the distribution of𝑀𝑜𝑑𝑒𝐸𝑛 and its components.
It can be noticed that 𝐻 (M𝑑

𝑖
) are mostly close to 0 while a peak

appears near 0.6-0.7. That indicates restaurants normally exhibit
single daily pattern, while some may have daily patterns switched
regularly between workdays and days-off. The majority of 𝐻 (M𝑤

𝑖
)

are close to 0, showing that most restaurants exhibit single weekly
pattern. As for𝑀𝑜𝑑𝑒𝐸𝑛, its distribution on all users contains one
dominant peak close to 0, distinct from that on labels shown in 9(b).

After𝑀𝑜𝑑𝑒𝐸𝑛 being calculated for each user, users with𝑀𝑜𝑑𝑒𝐸𝑛

below a specific threshold 𝛽 are treated as normal ones. 𝛽 is selected
from the sharp decrease point in𝑀𝑜𝑑𝑒𝐸𝑛 distribution of all users.

5 GAS-THEFT SUSPECT DETECTION
With Section 4, normal users are identified, and there remain un-
stable users to be analyzed further. In this section, we aim to detect
gas-theft suspects among unstable users. Because users who don’t
steal gas but have occasionally fluctuating modes can also be re-
garded as unstable users based on their𝑀𝑜𝑑𝑒𝐸𝑛.
Challenges. With 𝑀𝑜𝑑𝑒𝐸𝑛, though it is clear to detect normal
users, its distribution on gas-theft labels is overlapped with that on
most unstable users as Figure 9(b) shows. So we can’t distinguish
gas-theft suspects further with merely the information above.
Main Idea. To achieve our goal, we employ a ranking-based model,
i.e., RankNet, to score the suspicion level of each unstable user.
We feed RankNet with finer-grained features describing to what
extent users’ gas consumption behaviors deviate from their intrinsic
seasonal patterns. We train RankNet with positive-negative sample
pairs of gas-theft labels and normal users, and then use the trained
model to predict on unstable users. In this way, we establish a
comparative relation that suspicion scores of gas-theft labels are all
higher than those of normal users. So given an unstable user, the
higher its score is, the more suspicious it is detected to be.

5.1 Feature Extraction
We extract two categories of finer-grained features from hourly gas
consumption data, making it more distinct that to what extent users’
gas consumption behaviors deviate from their intrinsic seasonality.
Daily Deviation Features. For each restaurant user, to quan-
tify the deviation degree of gas consumption 𝐶𝑖 from its intrinsic
seasonality, we first generate a daily deviation sequence V𝑖 =<

𝑣1, 𝑣2, · · · , 𝑣𝐷 > with 𝐷 the total of days, and then extract features
from V𝑖 as listed in Table 1, which portray the distribution of daily



Table 1: Extracted features for RankNet.

Category Feature Description Dimension
𝑄1, 𝑄2, 𝑄3, 0.9-quantile of 𝑉 4

Daily Deviation Mean Absolute Deviation of 𝑉 1
Features Mean of 𝑉 1

STD of 𝑉 1
ACF Features 𝐴𝐶𝐹𝑘 , 𝑘 = 24, 120, 168 3

deviation degrees. V𝑖 is generated as follows: 1) STL decomposi-
tion [5] on𝐶𝑖 , extracting its seasonal component 𝑆𝑖 as the baseline;
2) Min-max normalization on both 𝐶𝑖 and 𝑆𝑖 ; 3) Calculating the
Pearson’s distance [10] between normalized 𝐶𝑖 and 𝑆𝑖 per day.
Autocorrelation Features.Autocorrelation Coefficient (ACF) [11]
represents the correlation among values of the same observation
at different times. It is widely used to find repetitive patterns in
periodic but probably noisy time series. Since we already know that
there should exist both daily and weekly patterns in hourly gas
consumption 𝐶𝑖 , we calculate the 𝐴𝐶𝐹𝑘 of 𝐶𝑖 with the time lags
𝑘 = 24, 120, 168 respectively, in order to measure its self-similarity
at 1-, 5-(length of weekdays) and 7-day intervals.

5.2 RankNet-based Suspect Detection
In this step, based on the aforementioned features extracted from
hourly gas consumption data, we score each user using the RankNet
model and report gas-theft suspects among unstable users.

The structure of RankNet is shown in Figure 10. RankNet takes
various features x extracted in Sec. 5.1, and generates a score 𝑠 =
𝑓 (x;w) through the neural network with the learned parameter w.

During the training phase, a positive-negative sample pair (i.e.,
a gas-theft label and a detected normal user) is sent into RankNet
each time, and the learning procedure is trying to score the gas-
theft label higher than the normal one. When we construct the
training pair 𝑢𝑖 and 𝑢 𝑗 , if 𝑢𝑖 is a gas-theft user and 𝑢 𝑗 is a detected
normal user, the label is 1, otherwise 0. The probability 𝑃𝑖 𝑗 that 𝑢𝑖
is more suspicious than 𝑢 𝑗 is modeled as 𝑃𝑖 𝑗 = 𝜎 (𝑠𝑖 − 𝑠 𝑗 ), where
𝑠𝑖 = 𝑓 (x𝑖 ;w), 𝑠 𝑗 = 𝑓 (x𝑗 ;w), 𝜎 (·) is the sigmoid function, and x𝑖 ,
x𝑗 are features extracted from 𝑢𝑖 and 𝑢 𝑗 respectively. Therefore, w
can be easily learned through the gradient descent by minimizing
the cross entropy loss between 𝑃𝑖 𝑗 and the label.

During the inference phase, we send features extracted from
unstable users into the network, and the users with higher scores
are more suspicious. To provide target users for on-site inspections,
we can report top N% suspicious users as gas-theft suspects.

Figure 10: Structure of RankNet.

6 EXPERIMENTS
6.1 Experimental Settings
Datasets. We conduct experiments on three real-world datasets
collected by three branches of a gas group, denoted by company
A, B, and C for short, which cover different districts of one city
in China. The statistics details of all restaurant users and users
remained after data pre-processing is shown in Table 2, where
there are only 23 users labeled as gas thefts. Each restaurant user
has a time series of its hourly gas consumption, of which the time
span lasts from Oct. 1st, 2019 to Oct. 31th, 2019.

Table 2: Details of datasets (#. Restaurants)
Dataset A B C
Raw 4,282 2,306 1,320

After D.P. Unlabeled Normal 1,329 838 418
Unstable 961 554 326

Labeled Gas Thefts 11 8 4

EvaluationMethods.We adopt two of the three datasets after data
pre-processing as the training set, and the left one for evaluating the
gas-theft suspect detection. Moreover, to overcome the randomness,
the evaluation is repeated for five times, of which the average
performance is reported.

We use the HitRate@N% as our evaluation metric, which is de-
fined as the ratio between the number of gas-theft labels contained
in the top N% suspicious users detected by algorithms and the num-
ber of all labels in the evaluation dataset. We report the hit rates in
top 5%, 10%, and 15% suspicious users.

𝐻𝑖𝑡𝑅𝑎𝑡𝑒@𝑁% =
#𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 𝑖𝑛 𝑡𝑜𝑝𝑁% 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠 𝑢𝑠𝑒𝑟𝑠

#𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑙𝑎𝑏𝑒𝑙𝑠 (3)

We note that conventional metrics, e.g., precision, recall, (best)
F-score and AUC, are not applicable in our task. Since they require
a dataset fully labeled for both normal users and abnormal users [4,
8, 13, 17], which are difficult to obtain in industrial scenarios.
Baselines. We compare our msRank with four baselines. The first
two baselines are unsupervised, which are directly applied to the
restaurant users after data pre-processing. The next two baselines
are supervised, for which gas-theft labels are used as positive sam-
ples and unlabeled users after data pre-processing as negative ones.
• LOF [2]: Local Outlier Factor is unsupervised, which measures
the local density deviation of given samples and detects whether
they have lower densities compared to their neighbors.

• DAGMM [26]: DAGMM is an unsupervised anomaly detection
method for high-dimensional data, which combines the deep
auto-encoder and the Gaussian mixture model.

• RankNet [3]: RankNet as a baseline is trained directly using
features elaborated in Section 5.1.

• SR-CNN [17]: SR-CNN is a state-of-the-art method for time se-
ries anomaly detection, which uses Spectral Residual to amplify
anomaly points in time series and is trained end to end.

Variants. We also compare msRank with its four variants:
• DBRank: DBRank uses the DBSCAN clustering for normal user
modeling, where 𝑚𝑖𝑛𝑃𝑡𝑠 = 4 and 𝜖 = 1.6. Users that are not



Figure 11: Effectiveness evaluation.

outliers are treated as normal samples and fed into the module
of gas-theft suspect detection.

• msOCSVM: msOCSVM uses the normal user modeling to find
normal users, and trains one-class SVM [19] with them. Unstable
users are ranked by the probability the trained OCSVM predicts.

• msMLP: msMLP uses the normal user modeling to find normal
users, and trains MLP with gas-theft labels and them. Unstable
users are ranked by the probability the trained MLP predicts.

• msGBDT: msGBDT is similar to the above one. The difference
is that MLP is replaced with the GBDT [9] classifier.

Parameter Setting. The entropy shifting parameter 𝛼 and the
𝑀𝑜𝑑𝑒𝐸𝑛 threshold 𝛽 is set as 0.67 and 0.2 respectively as stated
in Sec. 4.2. The number of inferred normal and unstable users are
shown in Tab. 2. RankNet employed in gas-theft suspect detection
contains three hidden layers with 128, 64, and 32 hidden units
respectively. Each unit uses the ReLu as the activation function.
Implementation.Our algorithms are implemented with Keras. Ex-
periments are conducted on aworkstationwith an Intel(R) Core(TM)
CPU i7-8700K @ 3.7GHz, 32GB memory, and Windows 10 OS.

6.2 Effectiveness Evaluation
Overall Evaluation.We first comparemsRank with four baselines
under the similar condition that gas-theft labels are scarce, as shown
in Figure 11. LOF, which calculates the density based on distances,
does not perform well on high-dimensional time series. Though
DAGMM can be used on the unsupervised situation, it is more
effective when negative samples are available. Therefore, it neither
shows a good performance. RankNet and SR-CNN both leverage
the gas-theft labels which make their hit rates higher. Our𝑚𝑠𝑅𝑎𝑛𝑘

outperforms all baselines in most cases, since it not only leverages
positive labels but also detects negative labels (normal users) to
improve the accuracy of suspicion scoring.
Effectiveness of Normal User Modeling. We demonstrate the
effectiveness of the normal user modeling component by comparing
msRank with RankNet and DBRank, as shown in Figure 11. With

normal user modeling, our msRank performs evidently better than
RankNet. The reason is that, the negative samples we feed to the
model are more accurate when they are detected normal users
instead of unknown users. The comparison between msRank and
DBRank shows that, normal user modeling based on the𝑀𝑜𝑑𝑒𝐸𝑛 is
much more effective than simply clustering gas consumption time
series in terms of finding normal users.
Effectiveness of RankNet.With the module of normal user mod-
eling providing negative samples, three well-performed supervised
models commonly used in utility fraud detection can be employed.
We compare msRank with msOCSVM, msMLP and msGBDT to
show the effectiveness of ranking-based detection, as shown in Fig-
ure 11. msRank performs the best among these classification-based
models. There are two reasons behind it: 1) Actually, we know
few real negative samples. The normal users detected by normal
user modeling may contain noises, which makes it difficult to train
classification-based models well. While the ranking-based method
focuses on modeling the relative relationship, which is more ro-
bust; and 2) The pair-wise training method generates more training
samples, thus the data we have can be fully leveraged.

7 SYSTEM DEPLOYMENT
Our system, i.e., GasShield, is deployed in a gas group in northern
China, and used internally to monitor real-time gas consumption
anomalies. The backend is implemented using the Flask andMySQL,
and the frontend is written using jQuery, Bootstrap and ECharts.
The gas consumption records collected by meters are reported to
Hive, and the data migrates to our MySQL database using Sqoop
weekly. After data pre-processing, msRank is called weekly to pre-
dict the gas-theft suspicion score for each restaurant user, based on
readings of the last 30 days.

The system interface ofGasShield is shown in Figure 12. It mainly
consists of three panels: 1) User Anomaly Type Distribution, which
gives the anomaly type distribution based on weekly predicted
results; 2) Extremely Suspicious Users, which lists themost suspicious
users (Top 5%)we detected in the descending order, so that operators
can conduct more targeted on-site inspections; and 3) Hourly Gas
Consumption, which displays the hourly gas consumption records
during the last 30 days for a selected user.

Based on both the incoming and the historical gas consumption
data, the threshold 𝛽 for normal user modeling will be renewed and
the RankNet will be re-trained with the newly inspected normal
users as well as gas-theft users every 30 days.

Figure 12: User interface of GasShield system.



8 RELATEDWORK
8.1 Gas Theft Detection
Traditional methods of gas theft detection highly rely on active
human efforts [25], which are costly yet ineffective. Hardware solu-
tions add protective devices onto meters [23], [16] proposes to find
gas-theft users using statistical indicators, while they both show
little effect actually. Different from them, we propose a data-driven
method msRank based on mining massive gas consumption data,
which greatly increases the efficiency of gas theft detection.

8.2 Utility Fraud Detection
Utility fraud is a worldwide concern for energy suppliers (gas,
power, and water). Plenty of data-driven methods, supervised or
semi-supervised, are proposed to detect it. They require fully labeled
data either synthetic or collected from numerous on-site inspec-
tions [6, 7]. Classification-based methods are widely adopted, which
are summarized in [4]. Clustering-based [21] is trained on normal
samples and tested on synthetic anomalies. Prediction-based [8]
models normal behaviors so that deviations (synthetic noises) are
detected as anomalies. Semi-supervised [13] first extracts features
under semi-supervision and then detects frauds in a supervised
way. To the best of our knowledge, our msRank is the first method
of utility fraud detection based on scarcely labeled real-world data,
which achieves superior performance proven by experiments.

8.3 Time Series Anomaly Detection
To detect gas-theft suspects based on gas consumption data is also a
problem of time series anomaly detection, for which existent meth-
ods present promising effects. They aremainly statistical [12, 20, 22],
supervised [14] or unsupervised [17, 24]. Aiming to monitor ser-
vice metrics, they mostly focus on point-wise anomalies like spikes
and dips, amplitude shifts, etc. However, utility fluctuations are
inevitable in real life. These methods can report many false alarms
in our scenario. Instead, our msRank detects gas-theft suspects by
capturing specific gas consumption patterns of restaurant users.

9 CONCLUSION
In this paper, we propose msRank to detect gas-theft restaurant
users with gas consumption data, overcoming the issue of label
scarcity. msRank first tells normal and unstable users apart based
on their gas consumption mode stability, which is quantified by
𝑀𝑜𝑑𝑒𝐸𝑛. Then, a RankNet-based suspect detection method ranks
unstable users by their suspicion levels, providing suggestions to
inspectors. Extensive experiments on three real-world datasets
show its effectiveness, andmsRank outperforms the best baseline by
25% in HitRate@10%. A system based on msRank, i.e., GasShield, is
deployed and used internally by a gas group of one city in northern
China. In the future, we will focus on generalizing our method to
more types of gas users and other utility fraud detection tasks.
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