
UrbanFM: Inferring Fine-Grained Urban Flows

Yuxuan Liang1,2, Kun Ouyang2,5, Lin Jing1, Sijie Ruan1,3, Ye Liu2, Junbo Zhang3,4

David S. Rosenblum2, Yu Zheng3,1,4
1School of Computer Science and Technology, Xidian University, China

2School of Computing, National University of Singapore, Singapore
3JD Intelligent Cities Business Unit & JD Intelligent Cities Research, China
4Institute of Artificial Intelligence, Southwest Jiaotong University, China

5SAP Machine Learning Applications, Singapore

{yuxliang,sijieruan,msjunbozhang,msyuzheng}@outlook.com,{david,ouyangk,liuye}@comp.nus.edu.sg

ABSTRACT

Urban flow monitoring systems play important roles in smart city

efforts around the world. However, the ubiquitous deployment of

monitoring devices, such as CCTVs, induces a long-lasting and

enormous cost for maintenance and operation. This suggests the

need for a technology that can reduce the number of deployed

devices, while preventing the degeneration of data accuracy and

granularity. In this paper, we aim to infer the real-time and fine-

grained crowd flows throughout a city based on coarse-grained

observations. This task is challenging due to the two essential

reasons: the spatial correlations between coarse- and fine-grained

urban flows, and the complexities of external impacts. To tackle

these issues, we develop a method entitled UrbanFM based on deep

neural networks. Our model consists of two major parts: 1) an

inference network to generate fine-grained flow distributions from

coarse-grained inputs by using a feature extraction module and a

novel distributional upsampling module; 2) a general fusion subnet

to further boost the performance by considering the influences of

different external factors. Extensive experiments on two real-world

datasets validate the effectiveness and efficiency of our method,

demonstrating its state-of-the-art performance on this problem.

CCS CONCEPTS

• Information systems→ Spatial-temporal systems.

KEYWORDS

Urban computing; Deep learning; Spatio-temporal data

ACM Reference Format:

Yuxuan Liang, Kun Ouyang, Lin Jing, Sijie Ruan, Ye Liu, Junbo Zhang, David

S. Rosenblum and Yu Zheng. 2019. UrbanFM: Inferring Fine-Grained Urban

Flows. In The 25th ACM SIGKDD Conference on Knowledge Discovery & Data

Mining (KDD’19), August 4–8, 2019, Anchorage, AK, USA. ACM, NY, NY, USA,

11 pages. https://doi.org/10.1145/3292500.3330646

The first two authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00
https://doi.org/10.1145/3292500.3330646

1 INTRODUCTION

The fine-grained urban flow monitoring system is a crucial com-

ponent of the information infrastructure system in smart cities,

which lays the foundation for urban planning and various appli-

cations such as traffic management. To obtain data at a spatial

fine-granularity, the system requires large amounts of sensing de-

vices to be deployed in order to cover a citywide landscape. For

example, thousands of piezoelectric sensors and loop detectors are

deployed on road segments in a city to monitor vehicle traffic flow

volumes in real time; many CCTVs are deployed ubiquitously for

surveillance purposes and for obtaining real-time crowd flow data.

With a large number of devices deployed, a high cost would be

incurred due to the long-term operation (e.g., electricity and com-

munication cost) and maintenance (e.g., on-site maintenance and

warranty). A recent study showed that in Anyang, Korea, the annual

operation and device maintenance fee for their smart city projects

reached 100K USD and 400K USD respectively in 2015 [15]. With

the rapid development of smart cities on a worldwide scale, the

cost of manpower and energy will become a prohibitive factor for

the further intelligentization of the Earth. To reduce such expense,

people require a novel technology which allows cutting the number

of deployed sensors while, most importantly, keeping the original

data granularity unchanged. Therefore, how to approximate the

original fine-grained information from available coarse-grained

data (obtained from fewer sensors) becomes an urgent problem.

3x3
resolution

6x6
resolution

(a) Coarse-grained crowd flows (32x32) (b) Fine-grained crowd flows (64x64)

Figure 1: Traffic flows in two granularities in Beijing, where

each grid denotes a region.

Take monitoring traffic in a campus as a regional example. We

can reduce the number of interior loop detectors and keep sensors

only at the entrances to save cost. However, we still desire to recover

the fine-grained flow distribution within the campus given only

the coarse-grained information. In this paper, our goal is to infer

the real-time and spatially fine-grained flows from observed coarse-

grained data on a citywide scale with many other regions (as shown

in Figure 1). This Fine-grained Urban Flow Inference (FUFI) problem,

however, is very challenging due to the reasons as follows:

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3132

Attractions

Real estates

Level-2 roads

(b) 10 am on weekdays (c) 10 am on weekends

(a) A core area of Beijing and
heatmaps of several geospatial attributes

(d) 10 am on weekdays
 with thunderstorm

(e) 8 pm on weekdays
30 31 32 33 34 35

Y

X

29

28

27

26

25

24
Beihai Park

Office Area

Residence

Government

Tourist
Attractions

Figure 2: The impact of external factors on the regional flow

distributions. (a) We obtain Point of Interests (POIs) for dif-

ferent regions, and then categorize regions into different se-

mantics according to the POI information. (b)-(d) depict the

average flowdistribution under various external conditions.

• Spatial Correlations. The fine-grained flow maps preserve spa-

tial and structural correlations with the coarse-grained counter-

parts. Essentially, the flow volume in a coarse-grained superre-

gion (e.g., the campus), is distributed to the constituent subregions

(e.g., libraries, sports center) in the fine-grained situation. This im-

plies a crucial structural constraint (i.e., spatial hierarchy [31]):

the sum of the flow volumes in subregions strictly equals that

of the corresponding superregion, as shown in Figure 1. Besides,

the flow in a region can be affected by the flows in the nearby

regions, which will impact the inference for the fine-grained flow

distributions over subregions. Methods failing to capture these

features would result in a degenerated performance.

• External Factors. The distribution of the flows in a given re-

gion is affected by various external factors, such as local weather,

time of day and special events. To see such impact, we present

a real-world study in an area of Beijing as shown in Figure 2(a).

On weekdays, (b) shows more flows occur in the office area and

attractions at 10 a.m. as compared to at 8 p.m. where residences

witness much higher flow density than the others (see (e)); on

weekends, however, (c) demonstrates that people tend to present

in a park area in the morning. It corresponds to our common

sense that people go out for work in the morning to attractions

for relaxation in the weekend and return home at night. Besides,

(d) shows that people keen to move to indoor areas instead of the

outdoor park under storms. These observations evince that re-

gions with different semantics present different flow distributions

in respect of different external factors. Moreover, these external

factors can intertwine and thus influence the actual distribution

in a very complicated manner.

The FUFI problem can be cast as a mapping problem which maps

data of low information entropy to that of high information entropy.

Sharing the same nature with FUFI, recent studies [2, 14, 17] in

image super-resolution (SR) have presented techniques for recover-

ing high-resolution images from low-resolution images, which has

motivated applications in other fields, such as meteorology [26].

Nevertheless, due to the aforementioned challenges, the simple ap-

plication of these techniques to FUFI is infeasible and thus requires

a careful redesign of the model architecture.

To this end, we present Urban Flow Magnifier (UrbanFM), a

deep neural network model which learns to infer fine-grained urban

flows under the supervised-learning paradigm. Following related

techniques [2, 14, 17, 26], we assume a number of fine-grained data

are available to bootstrap our solution1. The key contributions of

this paper lie in the following aspects:

• We present the first attempt to formalize the fine-grained ur-

ban flow inference problem with identification of the problem

specificities and relevant challenges.

• We design an inference network to handle the spatial correlations.

The inference network employs a convolutional network-based

feature extraction module to address the nearby region influence.

More importantly, it leverages a distributional upsamplingmodule

with a novel and parameter-free layer entitled N 2-Normalization

to impose the structural constraint on the model, by converting

the learning focus from directly generating flow volumes (as in

related arts) to inferring the actual flow distribution.

• We design an external factor fusion subnet to account for all

complex external influences at once. The subnet generates an

integrated, high-level representation for external factors. The

hidden features are then fed into different levels of the inference

network (i.e., coarse- and fine-grained levels) to enhance the

inference performance.

• We process, analyze, and experiment in two real-world urban

scenarios, including the taxi flows with a metropolitan cover-

age and the human flows within a touristic district respectively.

Our experimental results verify the significant advantages of

UrbanFM over five state-of-the-art and two heuristical methods

in both effectiveness and efficiency. Moreover, the experiments

from multiple prospectives validate the rationale for different

components of the model. We have released the code, sample

data and demo for public use2.

2 FORMULATION

In this section, we first define notations and then formulate the

problem of Fine-grained Urban Flow Inference (FUFI).

Definition 1 (Region) As shown in Figure 1, we partition an area

of interest (e.g., a city) evenly into a I×J gridmap based on longitude

and latitude, where a grid denotes a region [29]. Partitioning the

city into smaller regions (i.e., using larger I , J) suggests that we
can obtain flow data with more details, which produces a more

fine-grained flow map.

Definition 2 (Flow Map) Let X ∈ R
I×J
+ represent a flow map of

a particular time, where each entry xi , j ∈ R+ denotes the flow

volume of the instances (e.g., vehicle, people, etc.) in region (i, j).
Definition 3 (Superregion & Subregion) In our FUFI problem,

a coarse-grained grid map indicates the data granularity we can

observe upon sensor reduction. It is obtained by integrating nearby

grids within an N -by-N range in a fine-grained grid map given

a scaling factor N . Figure 1 illustrates an example when N = 2.

Each coarse-grained grid in Figure 1(a) is composed of 2× 2 smaller

grids from Figure 1(b). We define the aggregated larger grid as

superregion, and its constituent smaller regions as subregions. Note

that with this setting, the superregions do not share subregions.

Hence, the structure between superregions and the corresponding

subregions indicates a special structural constraint in FUFI.

1The original data can be obtained through previously deployed sensors or from
crowd-sourcing.
2https://github.com/yoshall/UrbanFM

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3133

Coarse-grained Flows
Co

nv

Re
LU

Re
sB

lo
ck

Re
sB

lo
ck

Re
sB

lo
ck

...

Feature Extraction

Co
nv

Ba
tc

hN
or

m

Co
nc

at

Su
bP

ix
el

 B
lo

ck

N2 - N
or

m
al

iza
tio

n

Fine-grained Flows

Distributional Upsampling

Co
nc

at
Weather Embed

TimeOfDay Embed
DayOfWeek Embed
Other external features

De
ns

e

Dr
op

ou
t

Re
LU

De
ns

e

Re
LU

Feature Extraction

Su
bP

ix
el

 B
lo

ck

Co
nv

Su
bP

ix
el

 B
lo

ck

Su
bP

ix
el

 B
lo

ck

E
xt

er
na

l F
ac

to
r F

us
io

n
In

fe
re

nc
e

N
et

w
or

k

External Factors

Co
nv

Co
nv

Re
LUBN BN Re
lu

Co
nv BN Pi

xe
l

Sh
uf

fle

ResBlock SubPixel Block

Detailed Layout

Nearest-Neighbor Upsampling

Figure 3: The UrbanFM framework for 4× upscaling (N = 4). ⊕ denotes addition and � denotes Hadamard product. Note that

our framework allows an arbitrary integer upscaling factor, not limited to the power of 2.

Definition 4 (Structural Constraint) The flow volume xci , j in a

superregion of the coarse-grained grid map and the flows x
f
i′, j′ in

the corresponding subregions of the fine-grained counterpart obey

the following equation:

xci , j =
∑
i′, j′

x
f
i′, j′ s .t .�

i ′

N
� = i, �

j ′

N
� = j . (1)

For simplicity, i = 1, 2, . . . , I and j = 1, 2, . . . , J in our paper unless

otherwise specified.

Problem Statement (Fine-grained Urban Flow Inference)

Given an upscaling factor N ∈ Z+ and a coarse-grained flow map

X
c ∈ R

I×J
+ , infer the fine-grained counterpart Xf ∈ R

N I×N J
+ .

3 METHODOLOGY

Figure 3 depicts the framework of UrbanFM which consists of

two main components for conducting the structurally constrained

inference and capturing complex external influence, respectively.

The inference network takes the coarse-grained flow map X
c as

input, and then extracts high-level features across the whole city by

leveraging deep residual networks [7]. Taking extracted features as

a priori knowledge, the distributional upsampling module outputs a

flow distribution over subregions with respect to each superregion

by introducing a dedicated N 2-Normalization layer. Finally, the

Hadamard product of the inferred distribution with the upsampled

coarse-grained flow map gives the fine-grained flow map X̃f as the

network output. In the external factor fusion branch, we leverage

embeddings and a dense network to extract pixel-wise external

features in both coarse and fine granularity. The integration of

external and flow features enables UrbanFM to exhibit fine-grained

flow inference more effectively. In this section, we articulate the

key designs for the two components, as well as the optimization

scheme in network training.

3.1 Inference Network

Inference network aims to produce the fine-grained flow distribu-

tion over subregions from a coarse-grained input. We follow the

general procedure in SR methods, which is composed of two phases:

1) feature extraction; 2) inference upon upsampling.

3.1.1 Feature Extraction. In the input stage, we use a convolutional

layer (with 9 × 9 filter size, F filters) to extract low-level features

from the given coarse-grained flow map X
c , and perform the first

stage fusion if external features are provided. Then M Residual

Blocks with identical layout take the (fused) low-level feature maps

as input and then construct high-level feature maps. The residual

block layout, as shown on the top right of Figure 3, follows the

guideline in [14] which contains two convolutional layers (3 × 3,

F) followed by a Batch Normalization [10], with an intermediate

ReLU [6] function to introduce non-linearity.

Since we utilize a fully convolutional architecture, the reception

field grows larger as we stack the network deeper. In other words,

each pixel at the high-level feature map will be able to capture

distant or even citywide dependencies. Moreover, we use another

convolutional layer (3 × 3, F) followed by batch normalization to

guarantee feature extraction. Finally, drawing from the intuition

that the output flow distribution would exhibit region-to-region

dependencies to the original Xc , we employ a skip connection to

introduce identity mapping [8] between the low-level features and

high-level features, building an information highway skipping over

the residual blocks to allow efficient gradient back-propagation.

3.1.2 Distributional Upsampling. In the second phase, the extracted

features first go through n sub-pixel blocks to perform an N =

2n upscaling operation which produces a hidden feature H
f ∈

R
F× N I× N J . The sub-pixel block, as illustrated in Figure 3, lever-

ages a convolutional layer (3×3, F×22) followed by batch normaliza-

tion to extract features. Then it uses a PixelShuffle layer [19] to rear-

range and upsample the feature maps to 2× size and applies a ReLU

activation at the end. After each sub-pixel block, the output feature

maps grow 2 times larger with the number of channels unchanged.

A convolutional layer (9 × 9, Fo) is applied post-upsampling, which

maps Hf to a tensor H
f
o ∈ RFo× N I× N J . Note that Fo = 1 in our

case. In SR tasks, H
f
o is usually the final output for the recovered

image with super-resolution. However, the structural constraint

which is essential to FUFI has not been considered.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3134

Algorithm 1: N 2-Normalization

Input: x, scale_factor, ϵ
Output: out

// x: an input feature map
// scale_factor: the upscaling factor
// ϵ: a small number for numerical stability
// out: the structural distributions

sum = SumPooling(x, scale_factor);

sum = NearestNeighborUpsampling(sum, scale_factor);

out = x � (sum+ϵ) // element wise division

In order to impose the structural constraint on the network, one

straightforward manner is to add a structural loss Ls as a regular-
ization term to the loss function:

Ls =
∑
i , j

����xci , j − ∑
i′, j′

x̃
f
i′, j′

����
F

s .t .�
i ′

N
� = i, �

j ′

N
� = j . (2)

However, simply applying Ls does not improve the model perfor-

mance, as we will demonstrate in the experiment section. Instead,

we design a N 2-Normalization layer, which outputs a distribution

over every patch of N -by-N subregions with regard to the respec-

tive superregion. To achieve this, we reformulate Equation 1 as in

the following:

xci , j =
∑
i′, j′

αi′, j′x
c
i , j

s .t .
∑

αi′, j′ = 1, α ∈ R+, �
i ′

N
� = i, �

j ′

N
� = j .

(3)

The flow volume in each subregion is now expressed as a fraction

of that in the superregion, i.e., x
f
i′, j′ = αi′j′x

c
i , j , and we can treat

the fraction as a probability. This allows us to interpret the network

output in a meaningful way: the value in each pixel states how

likely the overall flow will be allocated to the subregion (i ′, j ′). By
reformulation, we shift our focus from directly generating the fine-

grained flow to generating the flow distribution. This essentially

changes the network learning target and thus diverges from the tra-

ditional SR literature. To this end, we present the N 2-Normalization

layer: N 2-Normalization(Hf
o) = H

f
π , such that

H
f

π ,(i , j)
= H

f

o,(i , j)
/

i′=�i/N �∗N ,
j′=�j/N �∗N∑

i′=(�i/N �−1)∗N+1,
j′=(�j/N �−1)∗N+1

H
f

o,(i′, j′)
(4)

N 2-Normalization layer induces no extra parameters for the

network. Moreover, it can be easily implemented within a few

lines of code (see Algorithm 1). Also, the operations can be fully

paralleled and automatically differentiated in runtime. Remarkably,

this reformulation releases the network from concerning varying

output scales and enables it to focus on producing a probability

within [0, 1] constraint.

Finally, we upscale Xc using nearest-neighbor upsampling3 with

the scaling factor N to obtain X
c
up ∈ R

N I×N J
+ and then generate

the fine-grained inference by X̃
f = X

c
up � H

f
π .

3https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation

3.2 External Factor Fusion

External factors, such as weather, can have a complicated and vital

influence on the flow distribution over the subregions. For instance,

even if the total population in town remains stable over time, under

storming weather people tend to move from outdoor regions to

indoor regions. When different external factors entangle, the ac-

tual impact on the flow becomes implicit however unneglectable.

Thereby, we design a subnet to handle those impacts all at once.

Particularly, we first separate the available external factors into

two groups, i.e., continuous and categorical features. Continuous

features including temperature and wind speed are directly concate-

nated to be a vector econ . As shown in Figure 3, categorical features

include the day of week, the time of the day and weather (e.g, sunny,

rainy). Inspired by previous studies [16], we transform each cat-

egorical attribute into a low-dimensional vector by feeding them

into different embedding layers separately, and then concatenate

those embeddings to construct the categorical vector ecat . Then,

the concatenation of econ and ecat gives the final embeddings for

external factors, i.e., e = [econ ; ecat].

Once we get the concatenation vector e, we feed it into a fea-

ture extraction module whose structure is depicted in Figure 3. By

using dense layers, different external impacts are compounded to

construct a hidden representation, which models the complicated

interaction. The module provides two outputs: the coarse-grained

feature maps Hc
e and the fine-grained feature maps H

f
e , where H

f
e

is obtained by passing X
c
e through n sub-pixel blocks which are

similar to the ones in the inference network. Intuitively, Hc
e (H

f
e) is

the spatial encoding for e in coarse-grained (fine-grained) setting,

modeling how each superregion (subregion) individually responds

to the external changes. Therefore we concatenate Hc
e with X

c , and

H
f
e with H

f to the inference network. The early fusion of Hc
e and

X
c allows the network to learn to extract a high-level feature de-

scribing not only the citywide flow, but also the external influences.

Besides, the fine-grainedH
f
e carries the external information all the

way to the rear of the inference network, playing a similar role as

an information highway, and thus prevents information perishing

in the deep network.

3.3 Optimization

UrbanFM provides an end-to-end mapping from coarse-grained

input to fine-grained output, which is differentiable everywhere.

Therefore, we can train the network through auto back-propagation,

by providing training pairs (Xc ,Xf) and calculating empirical loss

between (Xf , X̃f), where X
f is the ground truth and X̃

f is the

outcome inferred by our network. As pixel-wise Mean Square Error

(MSE) is a widely used cost function in many tasks, we employ the

same in this work as follows:

L(Ω) = ‖Xf − X̃
f ‖2F (5)

where Ω denotes the set of parameters in UrbanFM. Note thatM
and F are the two main hyperparameters controlling the learning

ability as well as the parameter size of the network. We experiment

with different hyperparameter settings in the next section.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3135

4 EXPERIMENTS

The focus of our experiments is on examining the capacity of our

model in a citywide scenario. Therefore, we conduct extensive

experiments using taxi flows in Beijing to comprehensively test

the model from different aspects. In addition, we conduct further

experiments in a theme park, namely Happy Valley, to show the

model’s adaptivity on a relatively small area.

4.1 Experimental Settings

4.1.1 Datasets. Table 1 details the two datasets we use, namely

TaxiBj and HappyValley, where each dataset contains two sub-

datasets: urban flows and external factors. Since a number of fine-

grained flow data are available as ground truth, in this paper, we

obtain the coarse-grained flows by aggregating subregion flows

from the fine-grained counterparts.

• TaxiBJ4: This dataset indicates the taxi flows traveling through-

out Beijing. As depicted in Figure 1, the studied area is split into

32×32 grids, where each grid reports the coarse-grained flow

information every 30 minutes within four different periods: P1

to P4 (detailed in Table 1). Here, we utilize the coarse-grained

taxi flows to infer fine-grained flows with 4× resolution (N = 4).

In our experiment, we partition the data into non-overlapping

training, validation and test data by a ratio of 2:1:1 respectively

for each period. For example, in P1 (7/1/2013-10/31/2013), we use

the first two-month data as the training set, the next month as

the validation set, and the last month as the test set.

• HappyValley: We obtain this dataset by crawling from an open

website5 which provides hourly gridded crowd flow observa-

tions for a theme park named Beijing Happy Valley, with a total

1.25×105m2 area coverage, from 1/1/2018 to 10/31/2018. As shown

in Figure 4, we partition this area with 25×50 uniform grids in

coarse-grained setting, and target a fine granularity at 50×100

with an upscaling factor N = 2. Note that in this dataset, one

special external factor is the ticket price, including day price and

night price, obtained from the official account of HappyValley in

WeChat. Regarding the smaller area, crowd flows exhibits large

variance across samples given the 1-hour sampling rate. Thus,

we use a ratio of 8:1:1 to split training, validation and test set to

provide more training data.

4.1.2 Evaluation Metrics. We use three common metrics for urban

flow data to evaluate the model performance from different facets.

Specifically, Root Mean Square Error (RMSE) is defined as:

RMSE =

√√
1

z

z∑
s=1

����Xf
s − X̃

f
s

����2
F
,

where z is the total number of samples, X̃
f
s is s-th the inferred value

and X
f
s is corresponding ground truth. Mean Absolute Error (MAE)

andMeanAbsolute Percentage Error (MAPE) are defined as:MAE =
1
z

∑z
s=1 ‖X

f
s − X̃

f
s ‖1,1 and MAPE = 1

z

∑z
s=1 ‖(X

f
s − X̃

f
s) � X

f
s ‖1,1.

In general, RMSE favors spiky distributions, while MAE and MAPE

focusmore on the smoothness of the outcome. Smaller metric scores

indicate better model performances.

4See our github for download
5heat.qq.com

Table 1: Dataset Description.

Dataset TaxiBJ HappyValley

Time span

P1: 7/1/2013-10/31/2013

P2: 2/1/2014-6/30/2014 1/1/2018-

P3: 3/1/2015-6/30/2015 10/31/2018

P4: 11/1/2015-3/31/2016

Time interval 30 minutes 1 hour

Coarse-grained size 32×32 25×50

Fine-grained size 128×128 50×100

Upscaling factor (N) 4 2

External factors (meteorology, time and event)

Weather (e.g., Sunny) 16 types 8 types

Temperature/℃ [-24.6, 41.0] [-15.0, 39.0]

Wind speed/mph [0, 48.6] [0.1, 15.5]

Holidays 41 33

Ticket prize/¥ / [29.9, 260]

(a) Coarse-grained Crowd Flows in
Happy Valley (25x50)

(b) Fine-grained Crowd Flows in
Happy Valley (50x100)

Figure 4: Visualization of crowd flows in HappyValley.

4.1.3 Baselines. We compare our proposed model with seven base-

lines that belong to the following three classes: (1) Heuristics, (2)

Image super-resolution, (3) Meteorological super-resolution. The

first two methods are designed by us based on intuition or empirical

knowledge, while the next four methods are previously and cur-

rently state-of-the-art methods for single image super-resolution.

The last method is the state of the art on statistical downscaling for

climate data. We detail them as follows:

• Mean Partition (Mean): We evenly distribute the flow volume

from each superregion in a coarse-grained flow map to the N 2

subregions, where N is the upscaling factor.

• Historical Average (HA): Similar to distributional upsampling,

HA treats the value over each subregion a fraction of the value

in the respective super region, where the faction is computed by

averaging all training data.

• SRCNN [2]: SRCNN presented the first successful introduction

of convolutional neural networks (CNNs) into the SR problems. It

consists of three layers: patch extraction, non-linear mapping and

reconstruction. Filters of spatial sizes 9 × 9, 5 × 5, and 5 × 5 were

used respectively. The number of filters in the two convolutional

layers are 64 and 32 respectively. In SRCNN, the low-resolution

input is upscaled to the high-resolution space using a single filter

(commonly bicubic interpolation) before reconstruction.

• ESPCN [19]: Bicubic interpolation used in SRCNN is a special

case of the deconvolutional layer. To overcome the low efficiency

of such deconvolutional layer, Efficient Sub-Pixel Convolutional

Neural Network (ESPCN) employs a sub-pixel convolutional layer

that aggregates the feature maps from LR space and builds the

SR image in a single step.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3136

Table 2: Results comparisons on TaxiBJ over different time spans (P1-P4).

Methods
P1 P2 P3 P4

RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

MEAN 20.918 12.019 4.469 20.918 12.019 5.364 27.442 16.029 5.612 19.049 11.070 4.192

HA 4.741 2.251 0.336 5.381 2.551 0.334 5.594 2.674 0.328 4.125 2.023 0.323

SRCNN 4.297 2.491 0.714 4.612 2.681 0.689 4.815 2.829 0.727 3.838 2.289 0.665

ESPCN 4.206 2.497 0.732 4.569 2.727 0.732 4.744 2.862 0.773 3.728 2.228 0.711

DeepSD 4.156 2.368 0.614 4.554 2.612 0.621 4.692 2.739 0.682 3.877 2.297 0.652

VDSR 4.159 2.213 0.467 4.586 2.498 0.486 4.730 2.548 0.461 3.654 1.978 0.411

SRResNet 4.164 2.457 0.713 4.524 2.660 0.688 4.690 2.775 0.717 3.667 2.189 0.637

UrbanFM-ne 4.015 2.047 0.332 4.386 2.258 0.320 4.559 2.352 0.316 3.559 1.845 0.309

UrbanFM 3.950 2.011 0.327 4.329 2.224 0.313 4.496 2.318 0.315 3.501 1.815 0.308

• VDSR [11]: Since both SRCNN and ESPCN follow a three-stage

architecture, they have several drawbacks such as slow conver-

gence speed and limited representation ability. Inspired by the

VGG-net, Kim et al. presents a Super-Resolution method using

Very Deep neural networks with depth up to 20. This study sug-

gests that a large depth is necessary for the task of SR.

• SRResNet [14]: SRResNet enhances VDSR by using the residual

architecture presented by He et al.[7]. The residual architecture

allows one to stack a much larger number of network layers,

which bases many benchmark methods in computer vision tasks.

• DeepSD [26]: DeepSD is the state-of-the-art method on statis-

tical downscaling6 for meteorological data. It basically exploits

SRCNN for downscaling for an intermediate level, and performs

further downscaling by simply stacking more SRCNNs. This

method, however, would inherently require much more parame-

ters compared with our method.

4.1.4 Variants. To evaluate each component of our method, we

also compare it with different variants of UrbanFM:

• UrbanFM-ne: We simply remove the external factor fusion sub-

net from our method, which can help reveal the significance of

this component.

• UrbanFM-sl: Upon removing the external subnet, we further

replace distributional upsampling module by using sub-pixel

blocks and Ls to consider the structural constraint in this variant.

4.1.5 Training Details & Hyperparameters. Our model, as well as

the baselines, are completely implemented by PyTorch with one

TITAN V GPU. We leverage Adam [12], an algorithm for stochastic

gradient descent, to perform network training with learning rate

lr = 1e − 4 and batch size being 16. We also apply a staircase-like

schedule by halving the learning rate every 20 epochs, which allows

smoother search near the convergence point. In the external subnet,

there are 128 hidden units in the first dense layer with dropout rate

0.3, and I × J hidden units in the second dense layer. We embed

DayOfWeek to R2, HourOfDay to R3 and weather condition to

R
3. Besides, for VDSR and SRResNet, we use the default settings

in their paper. Since SRCNN, ESPCN and DeepSD perform poorly

with default settings, we test different hyperparameters for them

and finally use 768 and 384 as the number of filters in their two

convolutional layers respectively. See more details in our appendix.

6Downscaling means obtaining higher resolution image in meteorology [26] while
the opposite in computer graphics [2].

4.2 Results on TaxiBJ

Model Comparison

In this subsection, we compare the model effectiveness against the

baselines. We report the result of UrbanFM with M-F being 16-

128 as our default setting. Further experiments regarding different

M-F will be discussed later. Likewise, we postpone the result of

UrbanFM-sl to the next experiment for a more detailed study.

Table 2 summarizes the experimental results on TaxiBJ. We have

the following observations: (1) The UrbanFM and its variant outper-

form all baseline methods in all three metrics over all time spans

(P1-P4). Take SRRestNet for example. UrbanFM advances it by 4.5%,

17.0% and 54.1% for RMSE, MAE and MAPE on average, where

UrbanFM-ne also advances by 3.0%, 15.6% and 53.6% respectively.

The advances of UrbanFM-ne over all baselines indicate that the dis-

tribution upsampling in our inference network plays a leading role

in improving the inference performance; the advances of UrbanFM

over UrbanFM-ne support that the combination with external sub-

net indeed enhances the model by incorporating external factors.

(2) Image super-resolution methods outdo the heuristic method HA

on RMSE while show deteriorated scores on MAE and MAPE. This

can be attributed to two reasons: first, neural network methods are

dedicated to performing well on RMSE as it is the training objective;

second, HA preserves the spatial correlation for fine-grained flow

maps while the others fail to do so. This again emphasizes the im-

portance of preserving the structural constraint. A piece of further

evidence can be seen from the comparison between UrbanFM-ne

and SRResNet, where the former model has a similar structure as

SRResNet except for the distributional upsampling module, which

makes it surpass its counterpart. Due to the similarity of model ar-

chitecture, we select SRResNet as the baseline model for subsequent

studies over different UrbanFM components.

4.261

2.520

0.689

4.256

2.511

0.682

4.168

2.156

0.330

RMSE MAE MAPE

SRResNet
UrbanFM-sl
UrbanFM-ne

(a) 16-64 setting

4.301

2.588

0.740

4.307

2.590

0.741

4.130

2.126

0.319

RMSE MAE MAPE

SRResNet
UrbanFM-sl
UrbanFM-ne

(b) 16-128 setting

Figure 5: Performance comparison over various structural

constraints.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3137

Study on Distributional Upsampling

To examine the effectiveness of the distributional upsampling mod-

ule, we compare SRResNet with UrbanFM-ne (using distributional

upsampling but no external factors) and UrbanFM-sl (using struc-

tural loss instead of distributional upsampling), as shown in Figure 5.

In bothM-F settings, it can be seen that UrbanFM-sl regularized by

Ls performs very close to the SRResNet which is not constrained at

all. Though under the setting of 16-64, Urban-sl achieves a smaller

error than SRResNet in a subtle way, under the 16-128 setting they

behave the opposite. On the contrary, UrbanFM-ne consistently

outperforms the others on all three metrics. This results has verified

the superiority of the distributional upsampling module over Ls for
imposing the structural constraint.

Study on External Factor Fusion

External impacts, though are complicated, can assist the network for

better inferences when they are properly modeled and integrated,

especially in a more difficult situation when there is less data budget.

Thereby, we study the effectiveness of external factors by randomly

subsampling from the original training set according to four ratios

(i.e., 10%, 30%, 50% and 100%) which corresponds to four difficulty

levels: hard, semi-hard, medium and easy.

As shown in Figure 6, the gap between UrbanFM and UrbanFM-

ne becomes larger as we reduce the number of training data, indi-

cating that external factor fusion plays a more important role in

providing a priori knowledge. When the training size grows, the

weight for the priori knowledge decreases, as there exists over-

laying information between observed traffic flows and external

factors. Thus, the network may learn to capture some external im-

pacts when given enough data. Moreover, this trend also occurs

between UrbanFM and UrbanFM-sl, which illustrates that the N 2-

Normalization layer provides a strong structural prior to facilitate

network training.

P1-10% P1-30% P1-50% P1-100%

4.0

4.5

5.0

5.5

RM
SE

UrbanFM-sl
UrbanFM-ne
UrbanFM

P1-10% P1-30% P1-50% P1-100%

2.0

2.5

3.0

3.5

M
A
E

UrbanFM-sl
UrbanFM-ne
UrbanFM

Figure 6: Effects of external factors on four difficulties.

Study on Parameter Size

Table 3 compares the average performance over P1 to P4. Across

all hyperparameter settings, UrbanFM consistently outperforms

SRResNet, advancing by at least 2.6%, 13.7% and 48.6%. Besides,

Table 3: Results for differentM-F settings.

Methods Settings #Params RMSE MAE MAPE

SRResNet 20-64 1.8M 4.317 2.586 0.725

UrbanFM 20-64 1.9M 4.094 2.101 0.321

SRResNet 16-64 1.5M 4.261 2.520 0.689

UrbanFM 16-64 1.7M 4.107 2.118 0.322

SRResNet 16-256 24.2M 4.178 2.418 0.614

UrbanFM 16-256 24.4M 4.068 2.087 0.316

this experiment reveals that adding more ResBlocks (largerM) or

increasing the number of filters (larger F) can improve the model

performance. However, these also increase the training time and

memory space. Considering the tradeoff between training cost and

performance, we set the default setting of UrbanFM to be 16-128.

Study on Efficiency

Figure 7 plots the RMSE on the validation set during the training

phase using P1-100%. Figure 7(a) and 7(b) delineate that UrbanFM

converges much smoother and faster than baselines and its vari-

ants. Specifically, 7(b) suggests such efficiency improvement can be

mainly attributed to the N 2-Normalization layer since UrbanFM-sl

converges much slower and fluctuates drastically even it is con-

strained by Ls , when compared with UrbanFM and UrbanFM-ne.

This also suggests that learning the spatial correlation is a non-

trivial task. Moreover, UrbanFM-ne behaves closely to UrbanFM as

external factors fusion affects the training speed subtly when train-

ing data are abundant as suggested by the previous experiments.

0 500 1000 1500 2000 2500
0

10

20

30

40

50

V
al
id
at
io
n
RM

SE

Iteration

SRCNN
ESPCN
VDSR
SRResNet
UrbanFM

(a) Model comparison.

0 500 1000 1500 2000 2500
4

5

6

7

8

9

10

V
al
id
at
io
n
RM

SE

Iteration

UrbanFM
UrbanFM-sl
UrbanFM-ne

(b) Variant comparison.

Figure 7: Convergence speed of various methods.

Visualization

1) Inference error. Figure 8 displays the inference error ‖Xf − X̃
f ‖1,1

from UrbanFM and the other three baselines for a sample, where

a brighter pixel indicates a larger error. Contrast with the other

methods, UrbanFM achieves higher fidelity for totality and in de-

tails. For instance, area A and B are "hard area" to be inferred, as

A (Sanyuan bridge, the main entrance to downtown) and B (Sihui

bridge, a huge flyover) are two of the top congestion points in Bei-

jing. Traffic flow of these locations usually fluctuates drastically and

quickly, resulting in higher inference errors. Nonetheless, UrbanFM

remains to produce better performances in these areas. Another

observation is that the SR methods (SRCNN, ESPCN, VDSR and

SRResNet) tend to generate blurry images as compared to structural

methods (HA and UrbanFM). For instance, even if there is zero flow

in area C, SR methods still generate error pixels as they overlap the

predicted patches. This suggests the FUFI problem does differ from

the ordinary SR problem and requires specific designs.

2) External influence. Figure 9(a)-(d) portray that the inferred distri-

bution over subregions varies along with external factor changes.

Onweekdays, at 10 a.m., people had already flowed to the office area

to start their work (b); at 9 p.m., many people had returned home

after a hard-working day (c). On weekends, most people stayed

home at 10 a.m. but some industrial researchers remained work-

ing in the university labs. This result proves that UrbanFM indeed

captures the external influence and learns to adjust the inference

accordingly.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3138

15.0

12.5

10.0

7.5

5.0

2.5

0.0

A

BC

A

BC

Figure 8: Visualization for inference errors among different

methods. Best view in color.

4.3 Results on HappyValley

Table 4 shows model performances using the HappyValley dataset.

Note that in this experiment, we do not include DeepSD, since

this task contains only 2× upscaling such that DeepSD degrades

to SRCNN in this case. One important trait of the HappyValley

dataset is that it contains more spikes on the fine-grained flow

distribution, which results in a much larger RMSE score versus

that in the TaxiBJ task. Nonetheless, UrbanFM remains the winner

method outperforming the best baseline by 3.5%, 7.8% and 22%; the

UrbanFM-ne still holds the runner-up position. This proves that

UrbanFM not only works on the large-scale scenario, but is also

adaptable to smaller areas, which concludes our empirical studies.

Table 4: Results comparison on Happy Valley.

Methods Settings #Params RMSE MAE MAPE

MEAN x x 9.206 2.269 0.799

HA x x 8.379 1.811 0.549

SRCNN 768 7.4M 8.291 2.175 0.816

ESPCN 768 7.5M 8.156 2.155 0.805

VDSR 20-64 0.6M 8.490 2.128 0.756

SRResNet 16-128 5.5M 8.318 1.941 0.679

UrbanFM-sl 16-128 5.5M 8.312 1.939 0.677

UrbanFM-ne 16-128 5.5M 8.138 1.816 0.537

UrbanFM 16-128 5.6M 8.030 1.790 0.531

5 RELATEDWORK

5.1 Image Super-Resolution

Single image super-resolution (SISR), which aims to recover a high-

resolution (HR) image from a single low-resolution (LR) image,

has gained increasing research attention for decades. This task

finds direct applications in many areas such as face recognition

[5], fine-grained crowdsourcing [24] and HDTV [18]. Over years,

many SISR algorithms have been developed in the computer vision

community. To tackle the SR problem, early techniques focused on

interpolation methods such as bicubic interpolation and Lanczos

resampling [3]. Also, several studies utilized statistical image priors

(b) 10:00 weekday (c) 21:00 weekday (d) 10:00 weekend

(a) Studied Area

Office Area

Residence

Restaurant

Figure 9: Case study on a superregion near Peking Univ. See

our github for further dynamic analysis on this area.

[22, 23] to achieve better performances. Advanced works aimed

at learning the non-linear mapping between LR and HR images

with neighbor embedding [1] and sparse coding [25, 28]. However,

these approaches are still inadequate to reconstruct realistic and

fine-grained textures of images.

Recently, a series of models based on deep learning have achieved

great success in terms of SISR since they do not require any human-

engineered features and show the state-of-the-art performance.

Since Dong et al. [2] first proposed an end-to-end mapping method

represented as CNNs between the low-resolution (LR) and high-

resolution (HR) images, various CNN based architectures have been

studied for SR. Among them, Shi et al. [19] introduced an efficient

sub-pixel convolutional layer which is capable of recovering HR

images with very little additional computational cost compared

with the deconvolutional layer at training phase. Inspired by VGG-

net for ImageNet classification [20], a very deep CNN was applied

for SISR in [11]. However, training a very deep network for SR

is really hard due to the small convergence rate. Kim et al. [11]

showed residual learning speed up their training phase and verified

that increasing the network depth could contribute to a significant

improvement in SR accuracy.

Despite good performance on the RMSE accuracy, the gener-

ated image remains smooth and blurry. To address this problem,

Ledig et al. [14] first proposed a perceptual loss function which

consists of an adversarial loss to push their solution to the natural

image manifold, and a content loss for the better reconstruction

of high-frequency details. Lim et al. [17] developed an enhanced

deep SR network that shows the state-of-the-art performance by

removing unnecessary modules in [14]. Apart from super-resolving

classical images, there are limited studies that focus on utilizing

super-resolution methods to solve real-world problems in the urban

area. For example, Vandal et al. [26], presented a stacked SRCNN [2]

for statistical downscaling of climate and earth system simulations

based on observational and topographical data.

However, these approaches are not suitable for the FUFI problem

since the flow data present a very specific structural constraint with

regard to natural images, as such, the related arts cannot be simply

applied to our application in terms of efficiency and effectiveness.

To the best of our knowledge, we are the first to formulate and solve

the problem for fine-grained urban flow inference.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3139

5.2 Urban Flows Analysis

Due to the wide applications of traffic analysis and the increasing

demand for real-time public safety monitoring, urban flow analysis

has recently attracted the attention of a large amount of researchers

[31]. Over the past years, Zheng et al. [31] first transformed public

traffic trajectories into other data formats, such as graphs and ten-

sors, to which more data mining and machine learning techniques

can be applied. Based on our observation, there were several previ-

ous works [4, 21] forecasting millions, or even billions of individual

mobility traces rather than aggregated flows in a region.

Recently, researchers have started to focus on city-scale traffic

flow prediction [9]. Inspired by deep learning techniques that power

many applications in modern society [13], a novel deep neural

network was developed by Zhang et al. [30] to simultaneously

model spatial dependencies (both near and distant), and temporal

dynamics of various scales (i.e., closeness, period and trend) for

citywide crowd flow prediction. Following this work, Zhang et al.

[29] further proposed a deep spatio-temporal residual network to

collectively predict inflow and outflow of crowds in every city grid.

To address the data scarcity issue in crowd flows, very recent study

[27] aims to transfer knowledge between different cities to help

target city learn a better prediction model from the source city.

Apart from the above applications, we aim to solve a novel problem

(FUFI) on urban flows in this study.

6 CONCLUSION

In this paper, we have formalized the fine-grained urban flow infer-

ence problem and presented a deep neural network-based method

(UrbanFM) to solve it. UrbanFM has addressed the two challenges

that are specific to this problem, i.e., the spatial correlation as well

as the complexities of external factors, by leveraging the original

distributional upsampling module and the external factor fusion

subnet. Experiments have shown that our approach advances base-

lines by at least 4.5%, 17.0% and 54.1% on TaxiBJ dataset and 3.5%,

7.8% and 22% on HappyValley dataset in terms of the three metrics.

Various empirical studies and visualizations have confirmed the

advantages of UrbanFM on both efficiency and effectiveness.

In the future, we will explore more on improving the model

structure, and pay more attention to reducing errors in hard regions.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Founda-

tion of China Grant No. 61672399, No. U1609217 and No. 61773324,

as well as A*STAR SERC PSF under grant 152120008.

REFERENCES
[1] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. 2004. Super-resolution through

neighbor embedding. In CVPR.
[2] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. 2016. Image super-

resolution using deep convolutional networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 38, 2 (2016), 295–307.

[3] Claude E Duchon. 1979. Lanczos filtering in one and two dimensions. Journal of
Applied Meteorology 18, 8 (1979), 1016–1022.

[4] Zipei Fan, Xuan Song, Ryosuke Shibasaki, and Ryutaro Adachi. 2015. CityMo-
mentum: an online approach for crowd behavior prediction at a citywide level. In
Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous
Computing. 559–569.

[5] Bahadir K Gunturk, Aziz Umit Batur, Yucel Altunbasak, Monson H Hayes, and
Russell M Mersereau. 2003. Eigenface-domain super-resolution for face recogni-
tion. IEEE Transactions on Image Processing 12, 5 (2003), 597–606.

[6] Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Mahowald, Rodney J Douglas,
and H Sebastian Seung. 2000. Digital selection and analogue amplification coexist
in a cortex-inspired silicon circuit. Nature 405, 6789 (2000), 947.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[8] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identitymappings
in deep residual networks. In ECCV. 630–645.

[9] Minh X Hoang, Yu Zheng, and Ambuj K Singh. 2016. FCCF: forecasting citywide
crowd flows based on big data. In Proceedings of the ACMSIGSPATIAL International
Conference on Advances in Geographic Information Systems. 6.

[10] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 (2015).

[11] Jiwon Kim, Jung Kwon Lee, and Kyoung Mu Lee. 2016. Accurate image super-
resolution using very deep convolutional networks. In CVPR. 1646–1654.

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[13] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436.

[14] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunning-
ham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan
Wang, et al. 2017. Photo-Realistic Single Image Super-Resolution Using a Gener-
ative Adversarial Network.. In CVPR, Vol. 2. 4.

[15] Sang Keon Lee, Heeseo Rain Kwon, HeeAh Cho, Jongbok Kim, and Donju Lee.
2016. International Case Studies of Smart Cities: Anyang, Republic of Korea.
(2016).

[16] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. 2018. Geo-
MAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction.
In Proceedings of the International Joint Conference on Artificial Intelligence.

[17] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and Kyoung Mu Lee. 2017.
Enhanced deep residual networks for single image super-resolution. In The IEEE
Conference on Computer Vision and Pattern Recognition Workshops, Vol. 1. 4.

[18] Sung Cheol Park, Min Kyu Park, and Moon Gi Kang. 2003. Super-resolution
image reconstruction: a technical overview. IEEE Signal Processing Magazine 20,
3 (2003), 21–36.

[19] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an efficient sub-pixel convolutional neural network.
In ICCV. 1874–1883.

[20] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[21] Xuan Song, Quanshi Zhang, Yoshihide Sekimoto, and Ryosuke Shibasaki. 2014.
Prediction of human emergency behavior and their mobility following large-
scale disaster. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 5–14.

[22] Jian Sun, Zongben Xu, and Heung-Yeung Shum. 2008. Image super-resolution
using gradient profile prior. In CVPR. 1–8.

[23] Yu-Wing Tai, Shuaicheng Liu, Michael S Brown, and Stephen Lin. 2010. Super
resolution using edge prior and single image detail synthesis. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2400–2407.

[24] Matt W Thornton, Peter M Atkinson, and DA Holland. 2006. Sub-pixel mapping
of rural land cover objects from fine spatial resolution satellite sensor imagery
using super-resolution pixel-swapping. International Journal of Remote Sensing
27, 3 (2006), 473–491.

[25] Radu Timofte, Vincent De Smet, and Luc Van Gool. 2014. A+: Adjusted an-
chored neighborhood regression for fast super-resolution. In Asian Conference
on Computer Vision. 111–126.

[26] Thomas Vandal, Evan Kodra, Sangram Ganguly, Andrew Michaelis, Ramakrishna
Nemani, and Auroop R Ganguly. 2017. Deepsd: Generating high resolution
climate change projections through single image super-resolution. In Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1663–1672.

[27] Leye Wang, Xu Geng, Xiaojuan Ma, Feng Liu, and Qiang Yang. 2018. Crowd
Flow Prediction by Deep Spatio-Temporal Transfer Learning. arXiv preprint
arXiv:1802.00386 (2018).

[28] Jianchao Yang, John Wright, Thomas S Huang, and Yi Ma. 2010. Image super-
resolution via sparse representation. IEEE Transactions on Image Processing 19,
11 (2010), 2861–2873.

[29] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction. In The AAAI Conference on
Artificial Intelligence. 1655–1661.

[30] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-based
prediction model for spatio-temporal data. In Proceedings of the ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems. 92.

[31] Yu Zheng, Licia Capra, Ouri Wolfson, and Hai Yang. 2014. Urban computing:
concepts, methodologies, and applications. ACM Transactions on Intelligent
Systems and Technology 5, 3 (2014), 38.

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3140

A APPENDIX FOR REPRODUCIBILITY

To support the reproducibility of the results in this study, we have

released our code and data7. Here, we present the details of the

dataset, normalization method and experimental settings.

A.1 Statistics of Datasets

In section 4, we have illustrated how we split the training, valida-

tion and test set based on the two real-world datasets: TaxiBJ and

HappyValley. Since there are some coarse-grained data with most

zero entries (e.g., extremely noisy data), we directly remove them

from the original dataset. Also for this reason, we select the flows

between 7 am and 21 pm to conduct the experiments. Here, we

display the details of available samples in each set in Figure 5.

Table 5: The details of partition over two datasets

Dataset Time Span
Size

train valid test

TaxiBJ

P1 1530 765 765

P2 1779 889 891

P3 1746 873 873

P4 2122 1061 1061

HappyValley x 2188 273 275

A.2 Normalization Method

We employ data normalization before the training phase to speed up

the convergence of our method. Recall that we obtain the inferred

distribution H
f
π (in the range [0, 1]) together with X

c
up ∈ R

N I×N J
+

which is upsampled from the original coarse-grained flow map.

Every entry of the final fine-grained output X̃f = X
c
up � H

f
π is

positive, i.e., x̃
f
i′, j′ > 0. Hence, we use Min-Max normalization to

scale the input and the output to [0, 1]. Since the original scale of

coarse- and fine-grained flows are different, we plot each regional

flow volumes from the flow maps of TaxiBJ in Figure 10, where a

long tail can be observed in both settings. An explanation is that

some regions can sometimes witness a high flow volume, which

can be attributed to the rush hours or traffic jams[31]. Due to the

long tail, suppose we simply use the maximum of such flows as

max-scaler, it will restrict most values to be much smaller than 1.

Based on this observation, we set the two max-scaler 1500 and 100

in coarse- and fine-grained data respectively. Likewise, we use the

same method to decide the proper scaler in HappyValley dataset.

(a) Distribution of coarse-grained flows (b) Distribution of fine-grained flows

Figure 10: Distribution of urban flows in TaxiBJ dataset.

7https://github.com/yoshall/UrbanFM

A.3 Detailed Settings of Baselines

We detail the model configuration as well as hyperparameter search-

ing spaces for each baseline in this section.

• Mean Partition (Mean): It is parameter-free and can be directly

applied to the test set.

• Historical Average (HA): Firstly, we compute the mean distri-

bution matrix on the training set (with no parameters). Then, the

matrix is applied to generate the fine-grained flow map over a

coarse-grained observation.

• SRCNN: Since SRCNN under its default setting achieves infe-

rior performance and takes a long time to converge, we test

different hyperparameters for it, so as to find the best setting.

Suppose there are F1 and F2 filters in the two convolutional

layers of such method. We conduct a grid search over F1 =
{64, 128, 256, 512, 768, 1024} and F2 = {32, 64, 128, 256, 384, 512}.

The setting in which F1 = 768 and F2 = 384 outperforms the

others in the validation set.

• ESPCN: Similar to SRCNN with three-staged architecture, we

leverage F1 = 768 and F2 = 384 as the number of filters in

different convolutional layers respectively.

• DeepSD: Experiments show that ESPCN is more efficient and

effective than SRCNN [19]. In order to speed up this method

based on stacked SRCNNs, we use ESPCN to replace the SRCNN

in the original paper, (i.e., a stacked ESPCN).

• VDSR: The depth of convolutional blocks D and the number of

filters F in convolutional layer are two main hyperparameters.

We utilize the default setting D = 20 and F = 64 as suggested by

the authors [11].

• SRResNet [14]: In our paper, we compare our method with SR-

ResNet from multiple angles. There are two main hyperparame-

ters in SRResNet, including the depth of residual blocksM and

number of filters in convolutional layer F . We testM = {16, 20}

and F = {64, 128, 256} in different experiments, which is detailed

in Section 4.

A.4 Detailed Settings of UrbanFM

We first introduce how we implement N 2-Normalization layer

based on Pytorch, and further present the detailed settings of two

main components of our approach, i.e., inference network and ex-

ternal factor fusion subnet.

A.4.1 N 2-Normalization Layer. Figure 11 illustrates the Pytorch

implementation of N 2-Normalization layer, which plays a signifi-

cant role in our method.

Figure 11: Implementation ofN 2-Normalization layer based

on PyTorch 0.4.1

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3141

A.4.2 Inference Network. Table 6 show the detailed configuration

for the inference network which is depicted in Figure 3 (from left

to right). Note that the upscaling factor N = 4 in this example.

Table 6: Details settings of Inference Network in Figure 3,

where settings k-s-n means the size of kernel, stride and

number of filters in a certain convolutional layer. We omit

the batch size in the format of output for simplicity.

Layer Setting Output

Concat_1 x 2 × I × J
Conv_1 9-1-64 64 × I × J
ReLU x 64 × I × J

Conv_1 (ResBlock) 3-1-F F × I × J
BatchNorm_1 (ResBlock) x F × I × J
ReLU (ResBlock) x F × I × J
Conv_2 (ResBlock) 3-1-F F × I × J
BatchNorm_2 (ResBlock) x F × I × J
Other ResBlocks

Conv_2 3-1-F F × I × J
BatchNorm x F × I × J

Conv (SubPixel Block_1) 3-1-4F 4F × I × J
BatchNorm (SubPixel Block_1) x 4F × I × J
PixelShuffle (SubPixel Block_1) x F × 2I × 2J
ReLU (SubPixel Block_1) x F × 2I × 2J
Conv (SubPixel Block_2) 3-1-4F 4F × 2I × 2J
BatchNorm (SubPixel Block_2) x 4F × 2I × 2J
PixelShuffle (SubPixel Block_2) x F × 4I × 4J
ReLU (SubPixel Block_2) x F × 4I × 4J
Concat_2 x (F + 1) × 4I × 4J
Conv_3 9-1-1 1 × 4I × 4J
N 2-Normalization x 1 × 4I × 4J

A.4.3 External Factor Fusion Subnet. Before inputting to the subnet,

we the use embedding method to convert the categorical features

(like day of week, weather condition8) to learned representations

respectively, i.e., real-valued vectors. As shown in Table 7, we detail

the embedding settings for each external factor.

Table 7: Embedding setting of external factors.

Data Feature #Categroies Embed Length

Meteorology

Temperature x 1

Wind speed x 1

Weather 16 (8) 3

Time

Holiday 2 1

Weekend 2 1

Day of week 7 2

Hour of day 24 3

Event Ticket price x 1

8TaxiBJ witnesses 16 kinds of weather conditions: Sunny, Cloudy, Overcast, Rainy,
Sprinkle, ModerateRain, HeavyRain, Rainstorm, Thunderstorm, FreezingRain, Snowy,
LightSnow, ModerateSnow, HeavySnow, Foggy, Sandstorm, Dusty. For HappyValley,
only 8 types of above weather conditions are included.

Table 8 shows the details of the external subnet. The settings

of dense layer denotes the number of hidden units, while that

of dropout layer represents its randomly dropping rate. It is also

illustrated from left to right of Figure 3.

Table 8: Details of External Factor Fusion in Figure 3.

Layer Setting Output

Dense_1 128 128

Dropout 0.3 128

ReLU_1 x 128

Dense_2 I × J I × J
ReLU_2 x I × J

Conv (SubPixel Block_1) 3-1-4 4 × I × J
BatchNorm (SubPixel Block_1) x 4 × I × J
PixelShuffle (SubPixel Block_1) x 1 × 2I × 2J
ReLU (SubPixel Block_1) x 1 × 2I × 2J
Conv (SubPixel Block_2) 3-1-4 4 × 2I × 2J
BatchNorm (SubPixel Block_2) x 4 × 2I × 2J
PixelShuffle (SubPixel Block_2) x 1 × 4I × 4J
ReLU (SubPixel Block_2) x 1 × 4I × 4J

Applied Data Science Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

3142

