
Matrix Factorization for Spatio-Temporal Neural Networks
with Applications to Urban Flow Prediction∗

Zheyi Pan1, Zhaoyuan Wang4, Weifeng Wang1, Yong Yu1, Junbo Zhang2,3,4, Yu Zheng2,3,5
1Department of Computer Science and Engineering, Shanghai Jiaotong University, China

2JD Intelligent Cities Research, China; 3JD Intelligent Cities Business Unit, China
4Institute of Artificial Intelligence, Southwest Jiaotong University, China
5School of Computer Science and Technology, Xidian University, China

{zhpan,wfwang,yyu}@apex.sjtu.edu.cn;wang_zhaoyuan@foxmail.com;{msjunbozhang,msyuzheng}@outlook.com

ABSTRACT

Predicting urban flow is essential for city risk assessment and traffic

management, which profoundly impacts people’s lives and prop-

erty. Recently, some deep learning models, focusing on capturing

spatio-temporal (ST) correlations between urban regions, have been

proposed to predict urban flows. However, these models overlook

latent region functions that impact ST correlations greatly. Thus,

it is necessary to have a framework to assist these deep models in

tackling the region function issue. However, it is very challenging

because of two problems: 1) how to make deep models predict flows

taking into consideration latent region functions; 2) how to make

the framework generalize to a variety of deep models. To tackle

these challenges, we propose a novel framework that employs ma-

trix factorization for spatio-temporal neural networks (MF-STN),

capable of enhancing the state-of-the-art deep ST models. MF-STN

consists of two components: 1) a ST feature learner, which obtains

features of ST correlations from all regions by the corresponding

sub-networks in the existing deep models; and 2) a region-specific

predictor, which leverages the learned ST features to make region-

specific predictions. In particular, matrix factorization is employed

on the neural networks, namely, decomposing the region-specific

parameters of the predictor into learnable matrices, i.e., region em-

bedding matrices and parameter embedding matrices, to model

latent region functions and correlations among regions. Extensive

experiments were conducted on two real-world datasets, illustrat-

ing that MF-STN can significantly improve the performance of

some representative ST models while preserving model complexity.

CCS CONCEPTS

• Information systems→ Spatial-temporal systems;Datamin-

ing; • Computing methodologies → Neural networks.

KEYWORDS

Urban flow; neural networks; matrix factorization

∗Yu Zheng and Junbo Zhang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CIKM ’19, November 3–7, 2019, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6976-3/19/11. . . $15.00
https://doi.org/10.1145/3357384.3357832

ACM Reference Format:

Zheyi Pan1, ZhaoyuanWang4, Weifeng Wang1, Yong Yu1, Junbo Zhang2,3,4,

Yu Zheng2,3,5. 2019. Matrix Factorization for Spatio-Temporal Neural Net-

works with Applications to Urban Flow Prediction. In The 28th ACM In-

ternational Conference on Information and Knowledge Management (CIKM

’19), November 3–7, 2019, Beijing, China. ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3357384.3357832

1 INTRODUCTION

Accurately predicting citywide flows, such as the total crowd flows

entering and leaving a region during a given time interval [29], is

an essential task for the development of an intelligent city, as it can

provide insights to city administrators for risk assessment, traffic

management, and urban planning. Particularly, in risk assessment,

by knowing that overwhelming crowds will stream into a region

ahead of time, government can implement traffic control, send out

warnings, or even evacuate people, to prevent tremendous risks to

public safety (e.g., the catastrophic stampede caused by social riots,

which endangers huge life and economic losses for people).

Recent advances of mobile technologies generate a large col-

lection of citywide flow data, enabling researchers to solve this

challenging problem from a data-driven perspective. In the begin-

ning, some studies adopted traditional machine learning methods,

such as probabilistic graphical models, to predict urban flows [5, 10].

However, these models cannot effectively learn high-level ST rep-

resentation from raw input data. Thereafter, the success of deep

learning boosted the research of ST data mining and in particular

the flow prediction [23, 24, 29]. These models are attributed to the

powerful representation learning of deep network components,

such as convolution neural network (CNN) and recurrent neural

network (RNN), capable of learning high-level ST features to make

better predictions. In general, these existing deep ST models con-

sist of two main components: a ST feature learner (e.g., a network

consisting of CNNs, RNNs, or both) and a predictor (e.g. a fully

connected network), as illustrated in Figure 1 (a). Concretely, the

Historical flows Predicted flows

Predictor

ST feature
learner

Latent region function

ST feature
learner

Historical flows Predicted flows

(a) Conventional deep neural network

(b) The proposed framework

Region-specific
predictor

Figure 1: Conventional model vs. our MF-STN.

(a) Three real-world regions (b) A day’s inflow of regions (c) The inflow distribution of three regions, respectively.

AAA

BBBBBB

C

Figure 2: The example of region discrepancy in flow data.

ST feature learner can fully leverage training samples of all regions

to capture complex ST correlations by sharing parameters. On this

basis, the predictor makes the final prediction for each region. How-

ever, the predictor also uses shared parameters for all regions’ flow

prediction, which in fact makes it difficult to capture diverse flow

trends caused by the latent function of a region.

More specifically, as shown in Figure 2 (a), A, B, and C are three

real-world regions1 with different latent functions, corresponding

to a business, a residential and a park zone, respectively. On work-

days, as citizens go to work in the morning and return home at

night, Region A witnesses upward inflows in the morning while

Region B experiences high traffic during the evening, as shown

in Figure 2 (b). In addition, comparing with Region A and B, Re-

gion C has much less inflows, because fewer people go to park on

workdays. As a result, Figure 2 (c) shows the totally different flow

distributions of these three regions. Thus, a predictor using shared

parameters to predict all regions’ flows can hardly capture such

diverse flow distributions, leading to the limited predictive ability.

To make more accurate predictions, it is necessary to have a

general deep learning framework to assist these off-the-shelf deep

ST models in tackling the region function issue. However, it is very

challenging because of the following two problems:

• How to make models collaboratively predict urban flows with

consideration of latent region functions?

First, learning different latent region functions is necessary, be-

cause they have diverse impacts on regions’ flow trends. More-

over, regions essentially have inherent correlations among them,

e.g., if two business districts exhibit similar flow patterns, the

learned predictors for the two regions should be close to each

other. However, it is difficult to train a predictor for a certain re-

gion taking into consideration the specific latent region function,

as well as leveraging the information (i.e., training samples) of

other regions in addition to its own data.

• How to make the framework portable and lightweight?

As previously discussed, there is a variety of deep STmodels. How

our framework generalizes to them is non-trivial. Meanwhile the

framework needs to be as simple as possible to preserve model

complexity, so as to prevent over-fitting and hard optimization.

To tackle these two challenges, we propose a novel deep learn-

ing framework that leverages a matrix factorization approach for

modelling spatio-temporal neural networks, entitled MF-STN, to

enhance the existing deep ST models. As shown in Figure 1 (b),

the framework is comprised of two components: 1) a ST feature

learner that is employed to capture features of ST correlations for

all regions, which can be a sub-network in the existing deep models

for capturing ST correlations; and 2) a region-specific predictor,

1Located around Peking University in Haidian District, Beijing

which leverages the learned ST features to make a region-specific

flow prediction. Our contributions are four-fold:

• We are the first to analyze different impacts of the latent region

functions on urban flow trends. In light of this insight, we propose

a novel deep learning framework, consisting of a ST feature

learner and a region-specific predictor, capable of enhancing the

state-of-the-art deep models on ST forecasting tasks.

• We propose a region-specific predictor, which is a matrix factor-

ization based neural networks, to decompose the region-specific

parameters of the predictor into learnable matrices, i.e., region

embedding matrices and parameter embedding matrices. As a

result, the latent region functions along with the correlations

among regions can be modeled.

• We illustrate that MF-STN is a portable and lightweight frame-

work, which can be applied to a variety of existing deep ST

models, including ST-ResNet [29], DMVST-Net [24], STDN [23],

etc., while preserving the model complexity.

• We conduct extensive experiments on two real-world datasets.

The experiment results demonstrate that MF-STN can effectively

and efficiently enhance the performance of a wide range of deep

ST models. Moreover, the framework has been deployed in the

real-world applications.

2 PRELIMINARIES

In this section, we provide the definition and the problem statement

for urban flow prediction. For brevity, the frequently used notations

in this paper are presented in Table 1.

Table 1: Notations.

Notations Description

nr ∈ R Number of regions.

nt ∈ R Number of timestamps.

nv ∈ R Number of measured flow values.

nf ∈ R Number of collected ST features.

τhist, τpred ∈ R Number of historical/predicted timestamps.

{Xi ∈ Rnr ×nv } The flow data at timestamp i .

Definition 1. Urban flow dataset. The urban flow dataset dis-

cussed in this paper is denoted as a tensor Xdata = [X1, ...,Xnt] ∈
R
nt×nr×nv , where nt is the number of timestamps, nr is the number

of regions, and nv is the number of measured values (e.g., inflow and

outflow). Given an index (i, j,k), where 1 ≤ i ≤ nt , 1 ≤ j ≤ nr , and
1 ≤ k ≤ nv , the corresponding value of tensor Xdata at this index

denotes the k-th flow value of the region j at timestamp i .

Problem 1. Urban Flow Prediction. Given historical flow read-

ingsX = [X1, ...,Xτhist] ∈ Rτhist×nr×nv of all regions at previous τhist
timestamps, predict the future readings for the next τpred timestamps,

denoted as Ŷ = [Ŷ1, ..., Ŷτpred] ∈ Rτpr ed×nr×nv .

3 METHODOLOGY

3.1 Framework Overview

MF-STN consists of two components, a spatio-temporal feature

learner and a region-specific predictor, as shown in Figure 3. We

briefly overview the framework as follows.

Historical flows
Features of
all regions

ST
 F

ea
tu

re

Le
ar

ne
r

Re
gi

on
-s

pe
ci

fic

Pr
ed

ic
to

r

Predicted flows

Figure 3: Framework overview

1) Spatio-Temporal feature learner. This component takes all

regions’ flows as inputs, aiming to capture features with flows’

ST correlations for each region. The outputs of the ST feature

learner, i.e., the ST features of all regions, will be used as inputs

of the latter component, i.e., the region-specific predictor.

2) Region-specific predictor. This component takes the ST fea-

tures produced by the ST feature learner as the inputs, and use

them to make predictions. This predictor has region-specific

parameters, which can be regarded as nr neural networks, each

of which makes a prediction for a single region, respectively.

In the following subsections, we will illustrate the detail structures

of these two components.

3.2 Spatio-Temporal Feature Learner

As shown in Figure 3, the ST feature learner, denoted as G, aims to

collect ST features from the original data for all regions. Formally,

the input of the ST feature learner is a tensor X = [X1, ...,Xτhist] ∈
R
τhist×nr×nv , denoting all regions’ flow readings in the previous

τhist timestamps. Then, the input X is mapped by the ST feature

learner G into a matrix F = G(X) = [f1, ..., fnr] ∈ R
nr×nf , where

each fi is a vector denoting the ST feature values of i-th region.

As many deep ST models, e.g., ST-ResNet [29], DMVST-Net [24],

and STDN [23], were proposed to capture ST correlations for all

regions simultaneously, we can directly adopt the sub-networks

of these models, i.e., the components capturing ST correlations,

as the ST feature learner. One straightforward way to extract the

ST feature learner from a conventional deep model is using the

prefix network, i.e., the original network removing one or several

suffix layers. For example, we can use the whole residual neural

network in ST-ResNet [29] by removing its last layer as the ST

feature learner. Note that we do not make any other constraints

on the choice of existing deep ST models, except that the model

can be trained end-to-end by back-propagation. The portability of

MF-STN is further discussed in Section 3.5.

3.3 Region-Specific Predictor

Conventionally, existing deep ST networks employ a predictor with

shared parameters for all regions’ flow prediction. However, due to

different regions’ latent functions, it is essential to have a predictor

with an individual set of parameters for each region, respectively.

Meanwhile, as there are inherent correlations among regions, we

need to collaboratively learn the region-specific parameters. Previ-

ously in non-deep models, the problem was solved by regularizing

the region-specific parameters according to region similarity [14].

However, it needs prior knowledge to make assumptions on the

similarity function, such as defining similarity scores based on the

difference between the distributions of POIs in regions or pairwise

distance between regions, which are often unavailable (e.g., lack of

external data) or unreliable (assumptions are set by experience, not

always accurate or do not even hold.). Therefore, a question arises:

can we directly learn region-specific parameters in a collaborative

manner while considering the inherent region correlations?

Looking at this issue from another view, the learning process of

region-specific parameters can be regarded as a collaborative filter-

ing task, with the region and the parameter corresponding to the

user and the item respectively, and the parameter values at a region

being the score that a user rates an item. Thus, we propose to build

a region-specific predictor, which is a deep neural network, consist-

ing of some matrix factorization based dense (MFDense) layers and

non-linear activating functions, to learn high-level region-specific

features and make predictions, as shown in Figure 4 (a). Formally,

suppose F = [f1, ..., fnr] ∈ R
nr×nf denotes the output of the ST

feature learner where fi is the learned features for the i-th region,

and {H(1), ...,H(m)} denotes them MFDense layers in the region-

specific predictor. Then the predicted values can be calculated by

chaining all layers, formulated as:

Ŷ = H(m)(σ (...H(1)(σ (F))...)),

where σ is the activation function, such as ReLU and sigmoid func-

tion. More specifically, each MFDense layer contains nr sets of

parameter values, i.e., nr weight matrices, to model feature weights

in each region, respectively. To capture correlations among regions,

we employ the insights from the matrix factorization technique to

calculatenr weightmatrices from two small learnablematrices, i.e, a

region embedding matrix and a parameter embedding matrix. Next,

we will detail the MFDense layer, and discuss its interpretability.

Matrix Factorization Based Dense Layer

MFDense layer aims to learn high-level region-specific features. As

shown in Figure 4 (b), suppose the input of MFDense is a matrix F =
[f1, ..., fnr] ∈ R

nr×nf which denotes features for each region, and

its output is a matrix F ′ = [f ′1 , ..., f
′
nr] ∈ R

nr×n
′
f , representing the

region-specific high-level features after projection. Being different

from the standard dense layer, that shares a single weight matrix

for all regions, we employ a weight tensor W = [W1, ...,Wnr] ∈

R
nr×n

′
f
×nf , whereWi ∈ R

n′
f
×nf is the weight matrix to project the

i-th region’s features. However, directly usingW in networks has

two severe problems:

1) W has nr × n′
f
× nf parameters to be optimized, which is much

more than the standard dense layer with n′
f
× nf parameters,

especially when nr is large in real-world applications. As deep

models with excessive parameters could be hardly optimized

and easily over-fitting, such a method does not work in practice.

2) As previously mentioned, there are inherent correlations among

regions. Directly using this big weight tensor makes the flow pre-

diction separately for different regions. As a result, the inherent

correlations among regions are ignored.

To tackle the aforementioned problems, we can leverage the in-

herent correlations among regions, where some regions are similar

in certain ways, indicating that weight tensor W has redundant

ReLU

MFDense

ReLU

MFDense

...

(a) Region-specific predictor (b) Details of MFDense layer

Projected
results

Approximation by
matrix factorization

Region-specific
parametersRegion-specific

parameters
Region

embedding Parameter
embedding

Reshape to tensor

Features of
all regions

Region-specific
projection

Figure 4: Detail structure of region-specific predictor.

information. So we adopt the insights from collaborative filtering

(region≈user, parameter≈item) and matrix factorization, making

the assumption that W can be approximated by the dot product

of two matrices, i.e., a region embedding matrix R = [r1, ..., rnr] ∈

R
nr×k and a parameter embedding matrix P = [p1, ...,pnp] ∈

R
np×k , where np = nf n

′
f
is the number of parameters of a dense

layer for each region and k � nr ,np indicates the embedding

dimension. As shown in Figure 4 (b),W can be formulated as:

W = reshape(R · P�),

where · is the matrix dot product, and the reshape operator reforms

the weight matrix to the target three dimensional weight tensor

W. In this way, the learnable targets become R and P , instead of

W. After getting W, the output features of a MFDense layer can be

calculated by:

f ′i =Wi · fi + bi , i = 1 → nr ,

where i is the region index, fi ∈ R
nf is the input features, f ′i ∈ R

n′
f

is the output features, Wi ∈ R
n′
f
×nf is the weight matrix, and

bi ∈ R is the region-specific bias that can be calculated with the

same strategy asWi .

Discussion on Matrix Factorization Based Dense Layer

MFDense layer can effectively learn region-specific parameter val-

ues for each region because of the following two reasons. First, as

the model learns two small matrices R and P instead of the weight

tensor W, the number of training parameters is significantly re-

duced, i.e., fromnrnp to (nr +np)k , where k � nr ,np . In this way, it
makes the model easier to be optimized in practice. Second, region

embedding matrix R can help retain the information about W in a

compact manner, and it can describe inherent correlations among

regions by showing the region similarity. We conduct empirical ex-

periments to show the interpretability of region embedding matrix

R in Section 5.

3.4 Algorithm & Optimization

Suppose that MF-STN is optimized by a differentiable loss function

Ltrain (e.g., mean square error), which denotes the difference be-

tween the ground truth and the prediction values. Then, MF-STN

can be trained end-to-end by back-propagation.

More specifically, suppose that the region-specific predictor has

m MFDense layer {H(1), ...,H(m)}, where each H(i) has a weight

tensor W(i) ∈ R
nr×nf n

′
f , a region embedding matrix R(i), and a

parameter embedding matrix P (i). Then the gradient of weight

tensor ∇
W(i)Ltrain can be calculated by chain rule, which is the

same as a standard dense layer. After that, the gradient of R(i) is:

∇R(i)Ltrain = ∇
W(i)Ltrain · P (i),

while the gradient of P (i) is:

∇P (i)Ltrain = (∇
W(i)Ltrain)

� · R(i).

As for the ST feature learner G, the gradient of any parameter

θ ∈ G can be expressed as:

∇θLtrain = ∇FLtrain∇θG,

where F is the output features of G, and ∇FLtrain can be calculated

by applying chain rule on the region-specific predictor.

Algorithm 1 outlines the training process of MF-STN. We first

construct training data (Lines 1-5). Then we iteratively optimize

MF-STN by gradient descent (Lines 7-15) until the stopping criteria

is met. In this loop, we first apply the forward-backward operation

on network with a random batch data (Lines 8-9) to get gradients

of parameters, and then update the parameters within {H(i)} (Line

10-12) and G (Line 13-14) by gradient descent respectively.

Algorithm 1: Training algorithm of MF-STN

Input :Flow data X = (X1, ..., Xnt).

1 Dtrain ← ∅

2 for available t ∈ {1, ..., nt } do

3 X ← (Xt−τhist+1, ..., Xt) // input data

4 Y ← (Xt+1, ..., Xt+τpred) // label

5 put {X, Y} into Dtrain

6 initialize all trainable parameters

7 do

8 randomly select a batch Dbatch from Dtrain

9 forward-backward on Ltrain by Dbatch

10 for i ∈ {1, ...,m } do

11 R(i) = R(i) − α∇R(i) Ltrain // α is learning rate

12 P (i) = P (i) − α∇P (i) Ltrain

13 for θ ∈ G do

14 θ = θ − α∇θ Ltrain

15 until stopping criteria is met

16 Output: learned MF-STN model

3.5 Discussion on Portability and Complexity

Framework Portability

MF-STN is an extension of the conventional deep ST models, in

which the region-specific predictor can be regarded as a plugin to

capture latent region function taking into consideration region cor-

relations. Note that MF-STN should be trained end-to-end by back-

propagation and the region-specific predictor needs all regions’ ST

features as the input. Thus, from the view of model availability, a

common neural network that can output all regions’ features is

sufficient to be integrated with MF-STN. To illustrate the portability,

we classify the conventional deep models into three categories:

1) Basic deep models, such as FNN and GRU [2].

2) Basic ST models, such as CNN [8] and ConvGRU [1].

3) Flow prediction models, including ST-ResNet [29], DMVST-Net

[24], and STDN [23].

All these models can be applied on flow prediction task. In the

experiments (Section 5.2), we show that these models can have

significant improvement when they are integrated with MF-STN.

Framework Complexity

We discuss the framework complexity from the following two as-

pects to show that MF-STN is lightweight:

1) Number of parameters. MF-STN only applies stacked MF-

Dense layers after the ST feature learner, each of which contains

(nr +np)k parameters. Taking the flow prediction task in Beijing

as an example, nr = 1024, k is a small constant denoting the di-

mension of region embedding (e.g., k = 4), and np is the number

of parameters in a standard dense layer (e.g., a dense layer map-

ping 64 hidden units to another 64 hidden units has np = 4096),

it only introduces 20k additional parameters, much less than the

number of parameters in the ST feature learner (e.g., ST-ResNet

has 1130k parameters). In Section 5.2, we conduct experiments

to show that with very limited additional parameters, MF-STN

can still significantly improve the performance.

2) Training/inference time. First, due to the complexity of ST

correlations, the bottleneck of deep ST models is learning ST

features. Second, as k is a very small number, the computational

complexity of MFDense layer, i.e., O(knrnp), does not introduce
toomuch additional computational consumption, comparedwith

the complexity of a standard dense layer O(nrnp). Thus MF-

STN does not visibly degrade the efficiency of base ST models.

In Section 5.2, we also show that MF-STN can achieve better

performance without degrading training/inference speed in the

real-world applications.

4 FRAMEWORK DEPLOYMENT

UrbanFlow [29, 31], our previously deployed cloud-based system,

is capable of monitoring the real-time crowd flows and providing

the forecasting crowd flows in the near future. Now it is upgraded

to version 2.0 by using our MF-STN as the bedrock model for the

prediction. Here, we overview the functions of UrbanFlow briefly.

More details about the system deployment please refer to [31].

Figure 5 presents the interface of UrbanFlow where each grid on

the map stands for a region. The color of each grid is determined

in accordance with its crowd flows, e.g., “red” means dense crowd

flows and “green” means sparse crowd flows. A user can select any

grid on the interface and click it to see the region’s detailed flows.

The bottom of the interface shows a few sequential timestamps.

The heatmap at a certain timestamp will be shown in the interface

when a user clicks the associated timestamp. The user can watch the

(a) Interface of UrbanFlow2.0 (b) Region inflow/outflow

(c) Flow heatmaps in the past and future

Predicted flows

......

Historical flows

Region outflow

Region inflow

Figure 5: Interface of UrbanFlow2.0.

movie-style heatmaps by clicking “playbutton” at the bottom-left

of Figure 5 (a).

5 EVALUATION

In this section, we conduct experiments based on two real-world

taxi flow prediction tasks to evaluate MF-STN. Particularly, we

answer the following questions:

Q1. Can MF-STN be applied to a wide range of conventional deep

ST models?

Q2. Does MF-STN effectively improve the prediction beyond the

deep models it builds on and achieve state-of-the-art result?

Q3. Is MF-STN lightweight? More specifically, how does MF-STN

impact the number of network parameters, the training speed,

and the inference speed?

Q4. How do the settings of MF-STN, i.e., the number of MFDense

layers and the region embedding dimension, impact the pre-

diction result?

Q5. Can the region embedding learned by the region-specific pre-

dictor reflect the relationship among regions?

5.1 Experimental Settings

Datasets

We conducted extensive experiments based on two real-world

datasets, i.e., TaxiBJ and TaxiNYC, as shown in Table 2. The de-

Table 2: Datasets.

Dataset TaxiBJ TaxiNYC

Data type Taxi trajectory Taxi trip

Prediction target # inflow/outflow # pick-up/drop-off

City Beijing New York

Time span 2/1/2015 - 6/2/2015 1/1/2011 - 12/30/2014

Time interval 1 hour 1 hour

Region 32 × 32 grids 16 × 16 grids

Timestamps 3600 35064

tail descriptions are as follows:

1) TaxiBJ. This dataset is built from the trajectory dataset T-Drive

[27, 28], which contains a large number of taxicab trajectories

from 2/1/2015 to 6/2/2015 in Beijing. We first partition Beijing

city into 32×32 grids. Then for each grid, we calculate the hourly

inflows and outflows from these trajectories by counting the

number of taxis entering or exiting each grid. Finally, we aim to

predict the future inflows and outflows for each grid based on

the historical data.

2) TaxiNYC. This dataset records taxi trips in NYC from 2011 to

2014. Each trip contains information about pick-up/drop-off time,

pick-up/drop-off locations. We partition NYC into 16 × 16 grids,

and then count the hourly number of pick-ups and drop-offs for

each grid. We aim to predict the number of pick-ups/drop-offs

for each grid in the next hour(s) based on the historical data.

In both tasks, we use previous 12-hour records to predict values in

the next 3 hours. Each dataset is partitioned along time axis into

three non-overlapping parts, including training dataset, validation

dataset, and test dataset, with a ratio of 8:1:1.

Evaluation Metrics

We adopt two widely used metrics: mean absolute error (MAE) and

mean absolute percentage error (MAPE), to evaluate the accuracy

of the prediction results. The metrics can be expressed as:

MAE =
1

n

n∑

i=1

|yi − ŷi |, MAPE =
1

n

n∑

i=1

|yi − ŷi |

yi

where n is the number of values, yi is the ground truth, and ŷi is
the prediction value. Note that when yi is small, it gives a very

large penalty to MAPE loss, so the loss does not easily reveal the

effectiveness. Thus when calculating MAPE loss, we adopt the same

strategy as [23], filtering out the samples with yi < 10.

Baselines

We first compare MF-STN with some non-deep models, including:

• HA. Historical Average. We model the ST data as a seasonal

process, with a period of one day. The prediction result for a

certain timestamp is the average values of all historical data in

this timestamp.

• ARIMA. Autoregressive Integrated Moving Average is a widely

used model for time series prediction, which combines moving

average and autoregression.

• GBRT. Gradient Boosting Regression Tree. It produces predic-

tion results by an ensemble of some tree models.

Second, we implement many deep models, including state-of-the-

art methods in flow prediction, to compare with our model. They

are listed as follows:

• FNN. Feed Forward Neural Network. It is a network with stacked

fully connected layers, activated by some sigmoid functions.

• GRU [2]. Gated Recurrent Unit is a simple but effective RNN

structure for time series modeling. We implement a network with

stacked GRUs for prediction.

• CNN [8]. Convolutional Neural Network can capture ST cor-

relations on grid-based ST data, by applying the convolution

operator on spatial and temporal domains simultaneously. We

implement CNN as several stacked convolution layers, which are

activated by the ReLU function.

• ConvGRU [1]. It uses convolution and GRUs to model spatial

and temporal correlations respectively, and combines them to

learn ST features.

• ST-ResNet [29]. It adopts ResNet to model ST correlations in

grid-based ST prediction like CNN.

• DMVST-Net [24]. This model combines learned ST features from

three views: a spatial view (modeled by local CNNs), a temporal

view (modeled by LSTMs), and a semantic view (graph embed-

ding, which are retrieved from similarity between regions), to

make ST predictions.

• STDN [23]. It employs CNNs for spatial correlations, LSTMs

for temporal correlations, and a periodically shifted attention

mechanism to handle long-term periodic temporal shifting.

Note that all these deep models use standard dense layers as pre-

dictors. They can also be integrated with MF-STN. Next, we give

the settings of MF-STN in detail.

Settings of MF-STN (Q1.)

We directly adopt the prefix networks of above deep models, i.e.,

the network with only the suffix dense layers removed and no any

other modification, as the base ST feature learner in MF-STN. In ad-

dition, we apply ReLU function andm MFDesne layers after the ST

feature learner with embedding dimension k as the region-specific

predictor. For simplicity, each MFDense layer has 64 hidden units,

and we conduct grid search onm, k over {1,2,3}, {4,8,16} respectively.

We select the best model according to the prediction accuracy on

validation dataset.

All deep models are trained end-to-end by Adam optimizer [6]

with gradient descent. The initial learning rate is set as 0.01, and

we apply learning rate decay every 10 epochs with a ratio of 0.1.

All deep models are implemented based on MXNet 1.5.1 2, and

trained/tested on Ubuntu 16.04 with a single GTX 1080GPU.

5.2 Performance Results

Effectiveness Comparison (Q2.)

The performance of non-deep models, basic deep ST models and

the enhanced deep ST models are shown in Table 3. For simplic-

ity, the deep ST models enhanced by MF-STN are named as "base

model+". For all deep models, we train and test each of them at least

five times, and show the results as the format "mean ± standard

deviation". Moreover, the percentage values in parenthesis denote

the improvement of the enhanced deep models compared with the

corresponding base models.

First, conventional non-deep models, including ARIMA and

GBRT, are not good enough to predict flows, because of the limi-

tation of the model expressiveness that is unable to capture very

complex ST correlations. Second, the base deep ST models have

much better accuracy, compared with the non-deep models, be-

cause of their good ability in learning meaningful features. Finally,

we compare the enhanced deep models by our MF-STN with their

basic versions. On average, the enhanced models have 13.7% MAE

improvement and 17.9% MAPE improvement in the TaxiBJ dataset,

as well as 8.0% MAE improvement and 10.4% MAPE improvement

in the TaxiNYC dataset. Notably when applying MF-STN on ST-

ResNet, a very complex model with a large amount of parameters

to capture ST correlations, it can still significantly improve the

MAE (6% in TaxiBJ, 7% in TaxiNYC) and MAPE (7.9% in TaxiBJ,

2https://github.com/apache/incubator-mxnet

Table 3: Performance results on TaxiBJ and TaxiNYC.

Model [# parameters]

TaxiBJ TaxiNYC

MAE MAPE MAE MAPE

HA 26.2 22.9% 32.3 43.5%

ARIMA 40 38.8% N/A (Timeout) N/A (Timeout)

GBRT 37.7 37.8% 25.7 44.6%

FNN [7k] 24.5 ± 0.1 24.0% ± 0.2% 17.7 ± 0.2 43.6% ± 0.5%

FNN+ [16k, +128%] 19.4 ± 0.1 (-20.8%) 19.4% ± 1.3% (-19.2%) 14.9 ± 0.1 (-15.8%) 36.2% ± 0.2% (-17.0%)

GRU [39k] 23.2 ± 0.1 23.0% ± 0.4% 15.2 ± 0.1 40.0% ± 0.2%

GRU+ [42k, +7.1%] 18.6 ± 0.1 (-19.8%) 17.8% ± 0.4% (-22.6%) 13.8 ± 0.0 (-9.2%) 34.7% ± 0.1% (-13.3%)

CNN [300k] 23.0 ± 0.6 25.1% ± 0.3% 15.0 ± 0.4 43.0% ± 2,6%

CNN+ [304k, +1.3%] 19.0 ± 0.2 (-17.4%) 19.7% ± 0.4% (-21.5%) 13.1 ± 0.3 (-12.7%) 33.0% ± 0.8% (-30.2%)

ConvGRU [338k] 17.4 ± 0.2 18.1% ± 0.2% 11.8 ± 0.1 31.4% ± 0.3%

ConvGRU+ [341k, +0.8%] 16.9 ± 0.1 (-2.8%) 17.1% ± 0.1% (-5.5%) 11.4 ± 0.1 (-3.4%) 30.5% ± 0.3% (-2.9%)

ST-ResNet [1130k] 16.6 ± 0.6 17.7% ± 0.8% 11.4 ± 0.1 30.3% ± 0.1%

ST-ResNet+ [1133k, +0.2%] 15.6 ± 0.1 (-6.0%) 16.3% ± 0.1% (-7.9%) 10.6 ± 0.0 (-7.0%) 29.1% ± 0.1% (-4.0%)

DMVST-Net [57k] 18.7 ± 0.1 20.6% ± 0.1% 13.7 ± 0.3 34.2% ± 0.4%

DMVST-Net+ [60k, +5%] 17.0 ± 0.0 (-9.1%) 17.8% ± 0.5% (-13.6%) 12.4 ± 0.2 (-9.5%) 32.8% ± 0.3% (-4.1%)

STDN [198k] 23.4 ± 2.5 30.1% ± 5.8% 11.5 ± 0.1 31.5% ± 0.2%

STDN+ [203k, +2.5%] 18.7 ± 0.5 (-20.1%) 19.6% ± 0.4% (-34.9%) 11.7 ± 0.1 (+1.7%) 31.0% ± 0.3% (-1.5%)

4% in TaxiNYC) by only introducing three thousand additional

parameters, and achieve the state-of-the-art result.

The reason of such significant improvement is that TaxiBJ and

TaxiNYC have too many regions, i.e., 1024 and 256 respectively,

across the whole city, and they are very different from each other.

Thus a model with sharing parameters across all regions cannot

effectively learn such diverse flow trends. Instead, MF-STN learns

a predictor with region-specific parameters by matrix factorization,

enabling the model to tackle the region function issue while con-

sidering correlations among regions. As a result, the deep models

enhanced by MF-STN can have much better performance than the

basic versions.

Efficiency Comparison (Q3.)

We show the efficiency of MF-STN from two aspects:

• Model complexity. The number of parameters for the deep

models are shown in Table 3 where the percentage values refer to

the additional parameters compared with the basic model. Note

that integrating with MF-STN introduces very few additional

parameters, except for FNN (this model is too simple). All deep

models can have very significant improvement with such a small

number of additional parameters.

• Training/inference speed. As shown in Figure 6 and Figure 7,

we compare the efficiency of the base deep models and their en-

hanced versions, by plotting the average speed (samples/seconds)

in the training and inference processes. Note that except for the

very simple model FNN, the bottleneck of most deep models

are the ST feature learners. We find that MFDense layers only

bring a small amount of additional computation consumption.

Therefore, MF-STN does not visibly degrade the performance of

base models, illustrating that it is a lightweight framework.

5.3 Evaluation on Framework Settings (Q4.)

To show the robustness of MF-STN, we conduct experiments on

how different choices of two important parameters, i.e., the number

Training speed Inference speed
Sp

ee
d

(sa
m

pl
es

/s
)

Figure 6: Processing time for TaxiBJ dataset.

Training speed Inference speed

Sp
ee

d
(sa

m
pl

es
/s

)

Figure 7: Processing time for TaxiNYC dataset.

of MFDense layerm in the region-specific predictor, and the region

embedding dimension k , can affect the performance of MF-STN.

• Evaluation onm. We fixk = 8 by default and obtain the prediction

accuracy of the deep models enhanced by MF-STN with m =
{1, 2, 3} MFDense layers. As shown in Figure 8, adding more

MFDense layers for simple models, including FNN, GRU, and

CNN, can improve the prediction. The reason is that these models

are not well designed for ST data, so they are not strong enough

to learn ST features. As simply adding layers can make models

have more capacity for feature learning, the prediction accuracy

can be improved. As for complex deep ST models, including

ConvGRU, ST-ResNet, DMVST-Net and STDN, that are capable

of learning abundant ST features, adding more MFDense layers

on them has similar prediction accuracy compared with only a

single MFDense layer, showing the robustness of MF-STN.

TaxiNYCTaxiBJ

m

Figure 8: Evaluation on the number of MFDense layersm.

• Evaluation on k . We fixm = 1 and obtain the prediction accu-

racy of the deep models enhanced by MF-STN with embedding

dimension k = {4, 8, 16}. Larger k can roughly correspond to the

larger capacity of the embedding space, indicating more different

the regions could be. As shown in Figure 9, the prediction accu-

racy is stable with different k settings for complex ST models,

showing the robustness of MF-STN. In addition, it demonstrates

that though there are many regions in the cities, the function

of a region can be described by a low-dimensional vector. This

fact supports the feasibility of our insights, i.e., using matrix

factorization to model the inherent correlations among regions.
TaxiBJ TaxiNYC

k

Figure 9: Evaluation on the region embedding dimension k .

5.4 Case Study on Region Embedding (Q5.)

To further explain why MF-STN works, we present a case study on

the region embeddings learned by the enhanced ST-ResNet. To sup-

port the insights of MF-STN, two properties of region embedding

should be demonstrated: 1) embeddings show the region functions;

and 2) a good region embedding space should reveal the similarity

of regions, with nearby regions owning similar flows.

First, as shown in Figure 10 (a), we plot the region embeddings on

a two-dimensional plane. We select three representative regions, i.e.,

Zhongguancun (a business zone), Yongtaiyuan (a residential zone),

and Beijing Olympic Park (a park zone), as the symbol "×" marked

in Figure 10 (a). We also mark 3 nearest neighbors of each selected

region as symbol "+". Clearly, regions with different functions are

far away from each other as shown in Figure 10 (a), indicating

that the model learns very different region embeddings. Second,

to further verify that the region embeddings can reveal the region

similarity, we plot the flows of selected regions and their neigh-

borhoods in Figure 10 (b). Notice that these three regions have

analogous flow trends compared with their neighbors in the em-

bedding space, illustrating that region embeddings can effectively

represent the similarity among regions. In summary, this case can

show meaningful embedding space learned by MF-STN, explaining

why our proposed framework is effective in urban flow prediction.

6 RELATEDWORK

We study several categories of related works, positioning our work

in the research community.

• Urban Flow Prediction. Urban flow prediction is an important

topic in the field of urban computing. Initially, [5, 10, 11] proposed

non-deep models for this task. However, these models highly de-

pend on the hand-crafted features, that are hardly to comprehen-

sively depict the complex ST correlations among data. Thereafter,

the powerful representation learning of deep network boosted the

research of flow prediction. In the beginning, [30] presented a deep

neural network based flow prediction model. Next, [29, 31] im-

proved the prediction by separately modeling flow trends, periods,

and closeness, and using ResNet [4] to better capture ST correla-

tions among regions. [24] developed a multi-view prediction model

with a temporal view, a spatial view, and a semantic view of flows.

[23] studied the dynamic temporal shifting problem of flows. [3]

adopted multi-graph convolution to model spatial dependencies in

advance. In addition, [32] employed a multi-task learning frame-

work to simultaneously predict regions’ flows and flow transitions

between regions. Recently, [17] proposed to model diverse traffic

flow from other auxiliary geographical information by deep meta

learning method.

• Deep Learning for Spatio-Temporal Prediction. There are

many deep learning models proposed to solve related prediction

task on ST data. Specifically, CNN [8] is widely used as a basic

structure in capturing spatial correlations of grid-based data [7, 18].

In addition, due to the success of RNN [2] inmodeling sequence data,

many studies employed RNN to capture the temporal correlations

of ST data [15, 16, 20]. Recently, some research payed attention

to modeling more complex ST correlations, such as employing

graph convolution neural networks to extract spatial correlations

of non-grid data [9, 21, 25], and attention mechanisms to capture

the dynamic ST correlations [12].

• Matrix Factorization on Neural Networks’ Weights. In the

field of network compression, [13, 19, 26] adopted matrix factoriza-

tion for low-rank approximation to remove redundant information.

In the field of multi-task learning, [22] applied tensor factorization

to realize automatic learning of end-to-end knowledge sharing in

deep neural networks.

In summary, being different from all above works, this paper

focuses on modeling the diverse flow trends, as well as inherent

correlations among regions w.r.t. the regions’ flows. Moreover, the

proposed framework is the first to tackle such model-level dis-

crepancy in spatio-temporal prediction by matrix factorization on

neural network.

7 CONCLUSION

In this paper, we propose a novel deep learning framework, named

MF-STN, for incorporating the latent region function into the state-

of-the-art deep ST models to further improve the model ability

on citywide flow prediction. Our MF-STN provides a portable ST

feature learner, accommodating sub-networks of an existing deep

model to capture ST correlations, and a region-specific predictor,

leveraging the learned ST features to make region-specific predic-

tions by using matrix factorization on neural networks. We evaluate

MF-STN on two real-world datasets and the results show that these

deep models integrating with our framework can achieve signifi-

cantly better performance. In particular, experiments have shown

that our framework advances baselines by average 13.7%/17.9% on

the TaxiBJ dataset, and 8.0%/10.4% on the TaxiNYC dataset, in terms

of MAE/MAPE metrics, respectively. In addition, empirical studies

(a) Region embedding space (b) Comparison of a region’s flow with its neighbors

Business
zone

Park
zone

Residential
zone

Bu
sin

es
s

zo
ne

Re
sid

en
tia

l
zo

ne
Pa

rk

zo
ne

Figure 10: Visualization of region embedding. (a) "×" denotes the selected regions, while "+" denotes the neighborhoods of the

selected regions in the region embedding space. (b) "Rk"(k > 0) stands for the kth-nearest neighbor of selected region R0 in

the region embedding space.

and visualization have confirmed the advantages of MF-STN on

the effectiveness, efficiency, and robustness. In the future, we will

focus on generalizing our framework to more ST tasks.

ACKNOWLEDGMENTS

We thank Chentian Jin for his feedback on the draft of this paper,

and Yifang Zhou for her help on the system deployment. This

work was supported by the National Natural Science Foundation of

China Grant (61672399, U1609217, 61773324, 61702327, 61772333,

and 61632017).

REFERENCES
[1] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville. 2015. Delving deeper

into convolutional networks for learning video representations. arXiv preprint
arXiv:1511.06432 (2015).

[2] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.
Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[3] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, and
Yan Liu. 2019. Spatiotemporal multi-graph convolution network for ride-hailing
demand forecasting. In AAAI.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR.

[5] Minh X Hoang, Yu Zheng, and Ambuj K Singh. 2016. FCCF: forecasting citywide
crowd flows based on big data. In SIGSPATIAL. ACM.

[6] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[7] Benjamin Klein, Lior Wolf, and Yehuda Afek. 2015. A dynamic convolutional
layer for short range weather prediction. In CVPR.

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In NIPS.

[9] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting. In ICLR.

[10] Yexin Li and Yu Zheng. 2019. Citywide Bike Usage Prediction in a Bike-Sharing
System. TKDE (2019).

[11] Yexin Li, Yu Zheng, Huichu Zhang, and Lei Chen. 2015. Traffic prediction in a
bike-sharing system. In SIGSPATIAL. ACM.

[12] Yuxuan Liang, Songyu Ke, Junbo Zhang, Xiuwen Yi, and Yu Zheng. 2018. Geo-
MAN: Multi-level Attention Networks for Geo-sensory Time Series Prediction..
In IJCAI.

[13] Shaohui Lin, Rongrong Ji, Xiaowei Guo, Xuelong Li, et al. 2016. Towards Con-
volutional Neural Networks Compression via Global Error Reconstruction. In
IJCAI.

[14] Ye Liu, Yu Zheng, Yuxuan Liang, Shuming Liu, and David S Rosenblum. 2016.
Urban water quality prediction based onmulti-task multi-view learning. In IJCAI.

[15] Xiaolei Ma, Zhuang Dai, Zhengbing He, Jihui Ma, Yong Wang, and Yunpeng
Wang. 2017. Learning traffic as images: a deep convolutional neural network for
large-scale transportation network speed prediction. Sensors 17, 4 (2017), 818.

[16] Xiaolei Ma, Zhimin Tao, Yinhai Wang, Haiyang Yu, and Yunpeng Wang. 2015.
Long short-termmemory neural network for traffic speed prediction using remote
microwave sensor data. Transportation Research Part C: Emerging Technologies
54 (2015), 187–197.

[17] Zheyi Pan, Yuxuan Liang, Weifeng Wang, Yong Yu, Yu Zheng, and Junbo Zhang.
2019. Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta
Learning. In SIGKDD. ACM.

[18] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. In NIPS.

[19] Matthew Sotoudeh and Sara S Baghsorkhi. 2018. DeepThin: A self-compressing
library for deep neural networks. arXiv preprint arXiv:1802.06944 (2018).

[20] Yongxue Tian and Li Pan. 2015. Predicting short-term traffic flow by long short-
term memory recurrent neural network. In 2015 IEEE international conference on
smart city/SocialCom/SustainCom (SmartCity). IEEE, 153–158.

[21] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph WaveNet for Deep Spatial-Temporal Graph Modeling. IJCAI (2019).

[22] Yongxin Yang and Timothy Hospedales. 2017. Deep multi-task representation
learning: A tensor factorisation approach. ICLR (2017).

[23] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. 2019.
Revisiting Spatial-Temporal Similarity: A Deep Learning Framework for Traffic
Prediction. AAAI.

[24] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,
and Jieping Ye. 2018. Deep multi-view spatial-temporal network for taxi demand
prediction. AAAI.

[25] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph con-
volutional networks: A deep learning framework for traffic forecasting. IJCAI
(2018).

[26] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao. 2017. On compressing
deep models by low rank and sparse decomposition. In CVPR.

[27] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. 2011. Driving with knowl-
edge from the physical world. In SIGKDD. ACM.

[28] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun,
and Yan Huang. 2010. T-drive: driving directions based on taxi trajectories. In
SIGSPATIAL. ACM.

[29] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep Spatio-Temporal Residual
Networks for Citywide Crowd Flows Prediction. In AAAI.

[30] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, and Xiuwen Yi. 2016. DNN-based
prediction model for spatio-temporal data. In SIGSPATIAL. ACM.

[31] Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, Xiuwen Yi, and Tianrui Li. 2018.
Predicting citywide crowd flows using deep spatio-temporal residual networks.
AI 259 (2018), 147–166.

[32] Junbo Zhang, Yu Zheng, Junkai Sun, and Dekang Qi. 2019. Flow Prediction in
Spatio-Temporal Networks Based on Multitask Deep Learning. TKDE (2019).

