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ABSTRACT
With the increasing vehicles on the road, it is becoming more and
more important to sense citywide traffic, which is of great benefit
to the government’s policy-making and people’s decision making.
Currently, traffic speed and volume information are mostly derived
from GPS trajectories data and volume sensor records respectively.
Unfortunately, speed and volume information suffer from serious
data missing problem. Speed can be absent at arbitrary road seg-
ment and time slot, while volume is only recorded by limited volume
sensors. For modeling citywide traffic, inspired by the observations
of missing patterns and prior knowledge about traffic, we propose a
neural memorization and generalization approach to infer the miss-
ing speed and volume, which mainly consists of a memorization
module for speed inference and a generalization module for volume
inference. Considering the temporal closeness and period proper-
ties, memorization module takes advantage of neural multi-head
self-attention architecture to memorize the intrinsic correlations
from historical traffic information. Generalization module adopts
neural key-value attention architecture to generalize the extrinsic
dependencies among volume sensors by exploiting road contexts.
We conduct extensive experiments on two real-world datasets in
two cities, Guiyang and Jinan, and the experimental results con-
sistently demonstrate the advantages of our approach. We have
developed a system on the cloud, entitled CityTraffic, providing
citywide traffic speed and volume information and fine-grained
pollutant emission of vehicles in Guiyang city.
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1 INTRODUCTION
With the increasing vehicles on the road, it is becoming more and
more important to model citywide traffic, which is of great ben-
efit to many urban applications, especially for the government’s
policy-making and people’s decision making [15]. For example,
transportation agencies can perform traffic control and quickly
respond to traffic accidents with citywide traffic information. Also,
people can make fast-driving routes as well as avoid traffic conges-
tion during the driving. Moreover, the traffic information can be
used to estimate the spatial and temporal fine-grained pollutant
emission of vehicles, which is a crucial problem for mobile emission
inventory in environment domain [14].

For sensing traffic information, GPS trajectories, loop detectors,
and surveillance cameras are three widely used sensors in the trans-
portation domain, which can collect traffic speed and volume on
the road. As shown in Figure 1 a), GPS trajectories record the driv-
ing routes of vehicles, e.g. taxicabs and online car-hailing, which
can be used to estimate the travel speed with location and time
[20]. However, it is insufficient to sense citywide traffic speed and
directly infer traffic volume as it is only a small sample of entire
traffic. As shown in Figure 1 b), loop detectors and surveillance
cameras are volume sensors, which can record the actual number of
vehicles traversing the road [11]. However, the coverage of volume
sensors is limited because of the high installation and maintenance
overheads. Thus, the collected speed and volume information can
not cover the whole road network.

Figure 1: Traffic speed and volume sensors
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For modeling citywide traffic speed and volume, we can first
estimate the speed and volume on covered road segments with
collected GPS trajectory data and volume sensor records and then
infer the missing values of speed and volume on uncovered road
segments. However, this work faces two challenges.

First, the data suffers from a serious missing problem. For exam-
ple, in Jinan, only 2% road segments are monitored by surveillance
cameras and about 69% of road segments are traversed by taxicabs
in one hour. Moreover, the absence patterns of speed and volume
are significantly different. Speed can be absent at arbitrary road
segment and time slot, while volume is only recorded by a few
limited volume sensors. Thus, it is difficult to predict speed and
volume simultaneously in a multi-task framework.

Second, traffic has dynamic temporal dependencies and complex
spatial correlations. Traffic speed is correlated with historical speed
information, both near and far. For instance, traffic during morning
rush hours may be similar on consecutive workdays. Also, traffic
flow is correlated with adjacent road segments as vehicles traversed
on the road. Moreover, road context features, such as speed limita-
tion and road level, have an effect on the traffic as they reveal the
characteristics of a road.

To address these challenges, for inferring citywide traffic speed
and volume, we propose a neural memorization and generalization
approach, which mainly consists of a memorization module for
speed inference and a generalization module for volume inference.
Our approach is inspired by the observations of speed and volume
missing patterns and prior knowledge about traffic, which can
help to design the model structure with more interpretations. Our
contributions are listed as below:

• We propose a memorization module (CT-Mem) for citywide
speed inference, which can memorize the intrinsic correla-
tions from historical traffic information with neural multi-
head self-attention architecture.
• We propose a generalization module (CT-Gen) for citywide
volume inference, which can generalize the extrinsic depen-
dencies among existing volume sensors with neural key-
value attention architecture.
• We evaluate our approach on two real-world traffic datasets
in two cities, Guiyang and Jinan. Extensive experiments
demonstrate the advantages of our approach for both speed
and volume inference.
• We develop an online traffic modeling system on the cloud,
entitled CityTraffic, providing citywide traffic speed and
volume information and fine-grained pollutant emission of
vehicles in the Guiyang city of China.

2 OVERVIEW
Our approach mainly consists of three parts: preprocessing module
for data transformation, memorization module for speed inference,
and generalization module for volume inference. More specifically,
in the preprocessing module, we first map the GPS trajectories onto
road network with a storm-based map-matching method [4] and
then calculate the average travel speed for the road segments cov-
ered by matched trajectories [14]. Also, we aggregate traffic volume
by counting the number of vehicles detected by loop detectors or
surveillance cameras in a given time interval [11]. Moreover, for

Figure 2: Framework of our approach

each road segments, we extract road context features, e.g. road level
and speed limitation. For memorization module, considering the
temporal closeness and period properties, we firstly select corre-
lated historical speed records and then exploit neural multi-head
self-attention architecture to memorize the intrinsic correlations
for citywide speed inference. For generalization module, we firstly
select adjacent and correlated road segments with existing volume
sensors as candidates and then leverage neural key-value atten-
tion architecture to generalize the underlying dependencies among
volume sensors for citywide volume inference. Thus, we estimate
citywide speed and volume with GPS trajectory data and volume
sensor records. Moreover, we can estimate the spatial and temporal
fine-grained pollutant emission of vehicles based on the estimated
traffic information using an existing emission estimation equation
from environmental science [11].

Figure 3 illustrates the sensed speed and volume information
after data preprocessing. Speed and volume are stored in the form of
amatrix, where a row stands for a time slot t and a column refers to a
road segment r . An entry in the matrix refers to the reading of speed
or volume, while ? means the data is missing. For modeling citywide
traffic speed and volume, the task can be formulated as filling the
missing values of speed and volume matrix. From the left part of
Figure 3, we can observe that the absence of speed can occur on an
arbitrary road segment at any time slot. In other words, the missing
pattern of speed is dynamic and unpredictable. On the contrary,
as shown in the right part of Figure 3, the absence of volume is
constant and stable over time as the number of volume sensors is
limited. Thus, it is infeasible to infer the absent volume of a road
segment without volume sensor by its historical records. Inspired
by the above observations, considering the spatial and temporal
neighbors, we design a memorization module for speed inference
and a generalization module for volume inference respectively,
which will be detailed in Section 3.

Figure 3: Illustration of speed and volume information
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Figure 4: Speed inference method

3 METHODOLOGY
In this section, we elaborate our proposed memorization module for
citywide speed inference and generalization module for citywide
volume inference, which each module is implemented with a neural
attention architecture.

3.1 Memorization Module: CT-Mem
For citywide speed inference, as shown in Figure 4, we propose a
neural memorization module, entitled CT-Mem, which consists of
a feature construction component and a multi-head self-attention
network. The former component selects correlated historical speed
records as inputs and the latter network learns intrinsic correlations
from these records. Also, we integrate road context features for the
final speed prediction.

As we know, traffic speed is correlated with historical informa-
tion, both near and far. For example, the speed of a road is similar
to recent time slots, and the traffic during morning rush hours is
similar to that of consecutive workdays. Thus, in feature construc-
tion component, we select some relevant historical speed records
by jointly considering the records with adjacent time slots within
two hours and the records with the same time slot on daily and
weekly periods. Here, we do not incorporate speed information
from spatial neighbors. The reason behind it is the dynamic and
unpredictable missing pattern of speed, which we can not construct
a consistent input for the further network.

To memorize the correlations from historical traffic records, we
adopt a multi-head self-attention architecture based neural network
[3, 17], where self-attention can learn a better intrinsic relation
from one feature vector and multi-head structure can extract more
useful information than single self-attention. More specifically, we
aggregate the selected historical speed records together using a
concatenate layer and then feed it into a self-attention network,
which consists of weight calculation and weight average.

For weight calculation, it first takes the selected speed records x
as input, and calculates a vector of attention weights with a Softmax
function on the given input itself:

α = So f tmax(Φ(x) ·w) (1)
where Φ(x) is the projected feature vectors of x with a dense layer,
and w is a weight parameter vector. As the original dimension
of speed record is 1-dim, here, we up-sampling it to 2-dim for a
value-enhanced representation with Φ(x).

Figure 5: Volume inference method

For weight average, the result is computed as a weighted sum of
the calculated attention weights dot producing with the projected
feature vectors Φ(x):

sh = Φ(x) · α (2)
Finally, we can gather h-layer self-attention results with the multi-
head structure.

In addition to the speed information, we also consider the road
level, speed limitation, time of day, day of week as external features.
For learning the intra-dynamics of each influential factors, we use
embedding layer first before fusion. Combine external features and
outputs of multi-head self-attention together, we make the final
prediction with a full-connected layer.

3.2 Generalization Module: CT-Gen
For citywide volume inference, As shown in Figure 5, we propose a
neural generalization module, entitled CT-Gen, which consists of a
candidates selection component and a key-value attention network.
The former component selects related road segments with existing
volume sensors as candidates and the latter network learns the
extrinsic dependencies among volume sensors.

Due to the missing pattern of volume is constant and stable over
time, it is infeasible to infer volume from historical records. As vehi-
cles traversed on the road, volume records from adjacent roads can
provide lots of useful information. For modeling these information,
we design a candidates selection component to select correlated
road segments with existing volume sensors. The selection is based
on following two considerations. First, adjacent roads may be more
likely to have a similar volume. Second, road segments with the
same road characteristics may share similar volume pattern. Thus,
we first filter the volumes sensors with road characteristics, i.e.,
road level and road speed limitation. Then, we rank the adjacent
road segments by road-network distance in descending-order and
select the top k road segments as inputs.

To generalize the dependencies among volume sensors, we lever-
age a key-value attention network [12], which can learn the impor-
tance degrees of existing volume sensors and well fit the key-value
data storage format. More specifically, we divide road segments into
two categories, target and candidate. For each road segment, we can
construct a key-value pair, which the key refers to the road segment
id, time slot id, and road context features including length, lanes,
level, speed limitation and average speed, while the value is the
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volume. Thus, the data can fall into 4 groups, candidate key C , can-
didate value V, target key t, and target value o, where target value
needs to be predicted. With the candidate selection component, we
can construct a list of key-value candidates.

For learning the importance degrees of existing volume sensors,
we calculate the similarity scores between each candidate key and
target key with a dot-product operation, and then normalize the
scores as the relevance probability using a Softmax function:

β = So f tmax(Φ(t) ⊙ Φ(C)) (3)

where Φ is the feature projection operation, ⊙ denotes dot product
operation, and β represents the relevance probabilities of all can-
didates. Taking the result of candidates values dot producing the
calculated probabilities, we can estimate the target value o, which
is the final prediction.

o = Φ(V) · β (4)

3.3 Model training and prediction
Both CT-Mem and CT-Gen are trained via back propagation to
minimize mean squared error between the predicted value and the
ground truth value. The pseudo code of the training and prediction
process is presented in Algorithm 1.

Algorithm 1: CT-Mem and CT-Gen Algorithms
Input: Observed speed records Xs ; Observed volume records Xv ;

Absent speed records Rs ; Absent volume records Rv ;
Road context features Xr ;

Output: Predicted values of absent speed Ys and volume Yv .
// Memorization module;

1 Ds ←− ∅;
2 for each r in Xs do
3 Ds ←− FeatureConstruction(r, Xs , Xr );
4 end
5 train CT-Mem modelMs by minimizing the loss with Ds ;
6 Ys ←− Ms (Rs );
// Generalization module;

7 Dv ←− ∅;
8 for each r in Xv do
9 Dv ←− CandidateSelect ion(r, Xv , Xr );

10 end
11 train CT-Gen modelMv by minimizing the loss with Dv ;
12 Yv ←− Mv (Rv );

4 SYSTEM
Figure 6 illustrates the online process of CityTraffic architecture
on the cloud. With the data receiver implemented by web API, the
cloud can continuously receive GPS trajectories of floating cars
and volume records from loop detectors and surveillance cameras,
and then caches them into Redis, which is an in-memory database
for fast data changing. A virtual machine (VM) on the cloud pulls
the data from the Redis, and then infer citywide traffic speed and
volume with the learned CT-Mem and CT-Gen models from the
offline training process. The results from VM are pushed into Redis
and then visualized in the web through the web services. As the
cache size of Redis is only a little GB (e.g. 6GB), we also store the
data and results in the storage (e.g. Hive). For VM, we adopt the
machine with 2 cores and 3.5 GBmemory, which is enough to model
citywide traffic for a city.

Figure 6: CityTraffic architecture on the cloud

Figure 7 shows the website of CityTraffic. The main part is a
geo-map presenting the inferred citywide traffic information over
the whole road network, which can zoom-in and zoom-out for
different scales. The color of each road segment is determined in
accordance with the value of speed, volume, and emission, e.g. red
means congestion and green means unimpeded. Different from
traditional online map provider, we not only provide speed infor-
mation but also provide volume information and pollutant emission
information. The user can view the speed or volume or emission
via clicking the name in the top-right of the web. The left and
right parts visualize the citywide traffic information with line chart,
which the horizontal axis is the hour in past 24 hours and the verti-
cal axis is citywide information, consisting of average traffic speed
and volume for each road segment, and aggregated CO, NOx , and
PM2.5 emission for whole city. Moreover, the user can watch the
movie-style historical information by clicking the "Replay" button
at the right-top of the website. Also, the bottom of map shows a few
sequential time slots, which we can click the associated time slot
to see the detailed traffic information at that time slot, as shown in
the bottom of Figure 7.

Figure 7: Web interface of CityTraffic
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Table 1: Data statistic of Guiyang and Jinan datasets

Dataset Guiyang Jinan

Time Spans 2016/03/16- 2017/09/01-
2016/04/01 2017/09/30

Time Slots (minute) 20 60
Spatial Range (km) 25×32 28×18
# Road Segments 12,647 18,727

# Taxicabs 6,918 13,269
% covered/time slot 58.5% 69.2%
Volume Sensor Type Loop detector Surveillance camera
# Volume Sensors 155 354

5 EXPERIMENTS
5.1 Settings

5.1.1 Datasets. We evaluate our approach on two real-world
traffic datasets in Guiyang and Jinan cities, which table 1 details
the statistical results. We collect GPS trajectories data and volume
records data from March 16, 2016 to April 1, 2016 in Guiyang and
from September 1, 2017 to September 30, 2017 in Jinan. There are
6,918 taxicabs traversed in 12,647 road segments in Guiyang cov-
ering 25 × 32 km spatial range, and 13,269 floating cars traversed
in 18,727 roads in Jinan covering 28 × 18 km spatial range. Here,
we set 20 minutes and 60 minutes as a time slot for Guiyang and
Jinan, respectively. % covered/time slot is the proportion of road
segments traveled by at least once in a given time slot, which de-
notes the missing rate of citywide speed information. There are 155
loop detectors in Guiyang and 354 surveillance cameras in Jinan,
respectively. The geo-distribution of volume sensors are illustrated
in Figure 8, which each red icon represents a volume sensor. We can
see that the loop detectors are mainly deployed in the old down-
town in Guiyang city, while the surveillance cameras are relatively
dispersed over Jinan city.

Figure 8: Geo-distribution of Volume sensors

5.1.2 Ground Truth. For speed inference, we randomly remove
30% of non-zero observed speed records and predict these values
using different methods. The removed entries are then used as
ground truth to measure the accuracy of the predicted values.

For volume inference, as the task is to predict the volume of
road segments without volume sensors, we divide all observed
volume data by volume sensors into training and test sets with the
proportion of 7:3. Thus, we can avoid using historical volume data
to infer current volume information for the same location.

5.1.3 Baselines.

• K-Nearest Neighbor (KNN) averages the nearest top k
speed or volume values as the prediction.
• Historical Average (HA) averages the speed of historical
records at the same time slots.
• Contextual Average (CA) averages the volume values of
road segments with the same road context.
• Gradient Boosting Regression Tree (GBRT) is a power-
ful and widely used ensemble regression model.
• Feedforward Neural Network (FNN) flattens all the fea-
tures and then feeds them together into a multi-layer fully-
connected network.
• AttentionalDeepAir quality InferenceNetwork (ADAIN)
combines FNN and RNN to capture static and sequential fea-
tures and leverages an attention layer to learning different
weights of features [5].
• Context-aware Matrix Factorization (CMF) constructs
multiple related matrices, historical speed matrix and road
context matrix, and then perform collective matrix factor-
ization to infer the missing values [14].
• Spatio-Temporal Semi-Supervised Learning (ST-SSL) ap-
plies semi-supervised learning into spatio-temporal domain
to infer citywide traffic volume with loop detector data and
taxi trajectories [11].

5.1.4 Model Details.

• Preprocessing. We use min-max normalization to normal-
ize the continuous features into [0, 1], e.g. speed, and use
one-hot encoding to transform discrete features, e.g. week-
end/weekday. In the evaluation, we rescale the predicted
values back to the normal values.
• Hyperparameters. (1) the number of candidates in memoriza-
tion module and generalization module are 20 and 15; (2) the
dimension of volume key embedding is 10 and volume value
embedding is 10; (3) the dimension of road context embed-
ding is 5. We select 10% of the training data as the validation
set and allow training to be early stopped according to the
validation score.
• Activation & Optimization. For activation function, we use
Exponential Linear Unit for fully-connected layers. We apply
Adam to train the parameters with learning rate is 0.001 and
batch size is 512. To prevent over-fitting, we employ dropout
with probability 0.5 on the last layer.
• Experimental environment. We train the models on a GPU
server with Tesla K40m GPU and programming environment
is Keras with TensorFlow as backend.

5.1.5 Evaluation Metrics. We use Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) for evaluation, which
are defined as follow:

MAE =
1
n

n∑
t=1
|yi − ŷi |,MAPE =

1
n

n∑
t=1

|yi − ŷi |

ŷi
(5)

where yi and ŷi are ground truth and the corresponding predicted
value, and n is the total number of all available ground truth. Note
that MAE is more affected by larger values, while MAPE receives
more punishments from smaller values.
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5.2 Results
For evaluation, we repeat the experiments 5 times and take the
average as final results.

5.2.1 Results on speed inference. The performances of different
approaches for speed inference are presented in table 2. We find
that the HA performs better than MF and CMF. The reason behind
it is that speed has strong temporal dependencies, and which does
not change much within the closeness and the same daily period
and weekly period. Our CT-Mem approach achieves the highest ac-
curacy in both datasets as it memorizes the intrinsic dependencies
from historical traffic information, which can capture the temporal
correlations effectively. To further investigate the effectiveness of
closeness/daily/weekly features, we also compare CT-Mem with
its variants. By combining closeness, weekly period, daily period
together, we can see a clear decrease in MAE and MAPE. Also, we
can find the speed have a stronger daily correlation then closeness
and weekly. For CT-Mem(With Spatial), which add the speed in-
formation from its adjacent road segments, we can find a worse
performance. The reason behind it is the spatial correlations over
the whole road network are really complex and the dynamic and
unpredictable missing pattern of speed.

Table 2: Comparison results on speed inference

Methods Guiyang Jinan
MAE MAPE MAE MAPE

KNN 1.91 0.282 2.49 0.331
HA 0.99 0.143 1.25 0.160
MF 1.66 0.218 1.89 0.235
CMF 1.06 0.146 1.29 0.163
FNN 0.96 0.151 1.22 0.169

CT-Mem(Only Closeness) 1.13 0.175 1.38 0.180
CT-Mem(Only Weekly) 0.99 0.153 1.23 0.163
CT-Mem(Only Daily) 0.93 0.149 1.21 0.161
CT-Mem(With Spatial) 1.21 0.184 1.49 0.191

CT-Mem 0.89 0.140 1.16 0.153

5.2.2 Results on volume inference. Table 3 shows the perfor-
mance of the proposed approach CT-Gen with other competing
baselines. CT-Gen achieves the highest accuracy in both datasets
as it generalizes the extrinsic dependencies among volume sensors
by exploiting road contexts and spatial properties, which can cap-
ture the spatial correlations effectively. Also, we observe that the
performance improvement of Guiyang is higher than that of Jinan,
as Jinan dataset focuses on the downtown while Guiyang dataset
contains both downtown and suburbs, which demonstrates that
our model performs better for the road with low visiting frequency.
To illustrate the advantage of key-value attention, we compare
CT-Gen with its variant CT-Gen(self-attention), which adopts the
self-attention architecture. CT-Gen(self-attention) performs worst
that CT-Gen. The reason behind it is the context features and vol-
ume are two different kinds of information. Key-value attention can
capture complex feature interactions and encode prior knowledge
about traffic flexibility.

Table 3: Comparison results on volume inference

Methods Guiyang Jinan
MAE MAPE MAE MAPE

KNN 1.27 0.642 1.49 0.801
CA 1.14 0.623 1.47 0.712

GBRT 1.23 0.643 1.42 0.722
ST-SSL 1.06 0.581 1.37 0.692
FNN 1.33 0.688 1.51 3.853

ADAIN 1.23 0.643 1.42 0.722
CT-Gen(self-attention) 1.06 0.531 1.39 0.665

CT-Gen 0.98 0.395 1.32 0.618

5.2.3 Parameter turning. Figure 9 shows the impact of candidate
number of generalization module in Jinan dataset, which controls
the spatial range of adjacent neighbors. We observe that when vary-
ing the number of candidate, both MAE and MAPE first decreases
and then increases. When the candidate number is 15, CT-Gen
achieves the best performance consistently on all metrics. This is
because a small number may only capture the spatial correlation in
a small range, but a large number may fail to capture the spatial
correlation over a huge road network.

Figure 9: Impact of candidate number in Jinan

5.2.4 Citywide traffic speed and volume. Figure 10 shows the
citywide average traffic speed and volume in Jinan respectively. We
can observe that, before 6 am, the speed is fast while the volume
is low. During 6-9am (morning rush hours) and 4-7pm (afternoon
rush hours), the traffic volume has a similar increasing pattern.
Also, we can find the traffic of 12 am is the most unimpeded during
the daytime. Comparing workdays and holidays, the overall speed
and volume trend is similar and the congestion of workday come
earlier and heavier than the holiday.

Figure 10: Citywide traffic speed and volume of Jinan
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6 RELATEDWORK
6.1 Traffic Inference
There are many works focus on future traffic prediction, such as
[6, 10] propose CNN/RNN and attention based neural network to
short-term traffic speed prediction. However, future prediction task
is different with filling missing values task, due to the dynamic
missing pattern of traffic. Travel speed inference methods mainly
consider historical traffic data [7]. Matrix completion models [1]
are widely used by obtaining a suitable low-rank approximation of
the incomplete matrix. [14] proposed a context-based matrix factor-
ization to model real-time and historical speed patterns simultane-
ously. Different from them, we propose a multi-head self-attention
based neural model to memorize the intrinsic dependencies from
historical traffic information.

Traffic volume inference methods mainly consider the spatio-
temporal correlations and road contexts to infer absent volumes
[18]. [13] learns the relationships for highways traffic density esti-
mation. [14, 20] adopt an unsupervised bayesian model with GPS
trajectories and a few volume data. [2] explored the possibility of
learning a regression model with floating cars’ occurrence. [16]
propose a deep reinforcement learning based approach with surveil-
lance camera data. [11] estimate volume with a graph-based semi-
supervised model based on loop detector and taxi trajectories. Dif-
ferent from them, we propose a key-value attention based model
to generalize the extrinsic dependencies among existing volume
sensors for capturing complex feature interactions and encoding
prior knowledge about traffic flexibility.

6.2 Deep Learning for Spatio-Temporal Data
Currently, many works show the strength of DNN in solving spatio-
temporal prediction problems. To predict citywide crowd flows,
[21] proposed a residual based CNN network to learn both spa-
tial and temporal features. [19] proposed a deep distributed fusion
network to predict future air quality for each monitoring stations.
[9] proposes a deep neural network-based method for spatial fine-
grained urban flow inference problem. Recently, attention mecha-
nism is wildly used in general sequence-to sequence problems [17].
[8] developed a RNN-based multi-level attention network to fore-
cast geo-sensor readings. For inferring the air quality of locations
without monitoring stations, [5] proposes a attention based neural
network, which concatenates dynamic features and static features
to learn the importance of different stations.

7 CONCLUSION
In this work, we propose a neural memorization and generalization
approach for citywide traffic inference. Based on the observations
of missing patterns and prior knowledge about traffic, CT-Mem
takes advantage of multi-head self-attention architecture to mem-
orize the intrinsic correlations for speed inference and CT-Gen
adopts key-value attention architecture to generalize the extrinsic
dependencies for volume inference. Experimental results on two
real-world datasets, Jinan and Guiyang, consistently demonstrate
the effectiveness of our approach. We have developed a system on
the cloud, entitled CityTraffic, providing citywide traffic speed and
volume modeling services in Guiyang city.
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