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ABSTRACT    

Accompanying the rapid urbanization, many developing coun-
tries are suffering from serious air pollution problem. The de-
mand for predicting future air quality is becoming increasingly 
more important to government’s policy-making and people’s de-
cision making. In this paper, we predict the air quality of next 48 
hours for each monitoring station, considering air quality data, 
meteorology data, and weather forecast data. Based on the do-
main knowledge about air pollution, we propose a deep neural 
network (DNN)-based approach (entitled DeepAir), which con-
sists of a spatial transformation component and a deep distribut-
ed fusion network. Considering air pollutants’ spatial correla-
tions, the former component converts the spatial sparse air qual-
ity data into a consistent input to simulate the pollutant sources. 
The latter network adopts a neural distributed architecture to 
fuse heterogeneous urban data for simultaneously capturing the 
factors affecting air quality, e.g. meteorological conditions. We 
deployed DeepAir in our AirPollutionPrediction system, provid-
ing fine-grained air quality forecasts for 300+ Chinese cities eve-
ry hour. The experimental results on the data from three-year 
nine Chinese-city demonstrate the advantages of DeepAir be-
yond 10 baseline methods. Comparing with the previous online 
approach in AirPollutionPrediction system, we have 2.4%, 12.2%, 
63.2% relative accuracy improvements on short-term, long-term 
and sudden changes prediction, respectively. 
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1    INTRODUCTION 
With the rapid development of urbanization, air pollution is be-
coming a severe environmental and societal issue for all devel-
oping countries around the world [1]. Air pollution consists of a 
mixture of particulate matter (i.e. PM2.5 and PM10) and gaseous 
species (i.e. NO2, CO, O3 and SO2), which have both acute and 
chronic effects on human health, especially for young and elder-
ly [2]. From statistical results [3], Beijing recorded 46 days of 
heavy pollution during 2015, accounting for 12.6 percent of the 
year. For monitoring real-time air pollution, Chinese govern-
ments have built many air quality monitoring stations and pub-
lished air quality data every hour in recent years [4]. Besides 
monitoring, there is a rising demand for predicting future air 
quality, which can inform governments’ policy-making (such as 
performing traffic control when the air is polluted seriously) and 
people’s decision making (like whether to exercise outdoors).  

Predicting future air quality for a monitoring station, however, 
is very challenging because of the following reasons:  
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Figure 1: Multiple influential factors 

First, air quality has multiple influential factors. As illustrated 
in Figure 1, air pollutant sources mainly come from vehicle ex-
haust, industrial emission, coal burning, and dust [5], which 
each source has a different spatial distribution and temporal pat-
tern. From atmospheric science research [6], the accumulation 
and dissipation of air pollutants are mainly confounded by local 
emission, regional transport, meteorological conditions and so 
on. Depending on the impact on air quality, these factors fall in-
to two groups. Local emission and regional transport are direct 
factors as they are derived from pollutant sources and determine 
the formation of pollutants. Meteorological conditions, second-
ary productions, terrain and time are indirect factors as they de-
termine the development environment of pollutants. However, 
we do not have sufficient and accurate data to model all these 
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factors precisely. For example, it is almost impossible to obtain 
city-wide emission data from pollutant sources. Likewise, wea-
ther forecast data are not accurate enough as “The longer the fo-
recast horizon is, the less accurate the forecast will be.” 

Second, the interactions between these factors are complex. 
Most people have the sense of air quality will be better after rain. 
However, based on the statistical results of three-year data in 
Beijing which depicted in Figure 2(a), it still has above 20% ratio 
that air quality will be worse in the next few hours after rain. 
Though rain has a higher ratio of air quality will be better, it is 
still difficult to model the interaction as the effect is not absolute. 
The reason behind it is that air quality is affected by multiple 
factors simultaneously shown in Figure 1, which the interactions 
are complex. As a result, it is hard to determine the weight of 
each factor due to the dynamic environment. Likewise, it is very 
difficult to capture the spatio-temporal characterizations of air 
pollution dispersion as air quality changes over location and 
fluctuate along time without an obvious periodic pattern. 

 
     (a) Rain affect air quality            (b) AQI change over time 

Figure 2: Air quality change over multiple factors. Ratios in 
a) is calculated by ∆ = 𝐴𝑄𝐼𝑡+𝑘 − 𝐴𝑄𝐼𝑡, where 𝐴𝑄𝐼𝑡 > 100, 

𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑡 = 𝑟𝑎𝑖𝑛 and k is the time interval after rain. 

Third, in addition to normal fluctuation, it exists some sudden 
changes which are caused by some specific kinds of factor. Here, 
sudden changes mean that air quality index (AQI) drops very 
sharply in a very short time span [7]. As illustrated in Figure 
2(b), AQI of air quality monitoring station S2 at the 30th 
timestamp drops over 200 in the coming two hours due to a 
strong wind blowing from the southeast. Such a sudden change is 
very important to real-time monitoring and further data analysis. 
In daily life, most people always pay more attention to sudden 
changes than to general cases, as they only care about future air 
quality once the air is polluted seriously and want to know how 
long it will be good. However, the presence of sudden changes is 
very infrequent in whole datasets. Among entire observations of 
three-year air quality data in Beijing, the presence of sudden 
changes is less than 2.3%. Such data imbalance phenomenon 
brings much difficulty for air quality prediction. 

To address these challenges, we propose a DNN-based air qu-
ality prediction approach, entitled DeepAir. Our approach is in-
spired by the domain knowledge about air pollution, which can 
help design model structure with more interpretations. We de-
ployed DeepAir in real-time AirPollutionPrediction system [8], 
providing 48-hour fine-grained air quality forecasts for 300+ 
Chinese cities. Our contributions are listed as below: 

 Considering the dispersion of air pollutants, we design a spa-
tial transformation component to convert the spatial sparse 
air quality data into a consistent input for simulating second-
hand pollutant sources. With the signals from spatial neigh-
bors, DeepAir results in a better performance on general cases 
and sudden changes. 

 Considering direct and indirect factors have different effects 
on air quality, we propose a deep distributed fusion network 
to fuse heterogeneous urban data for capturing all influential 
factors. The network adapts a novel distributed architecture 
to simultaneously model the interactions between these fac-
tors for learning the individual and holistic influences. 

 Based on three-year data from 9 Chinese cities, the results 
demonstrate the advantages of DeepAir compared with 10 
baselines. We deployed DeepAir in AirPollutionPrediction 
system, providing fine-grained air quality forecasts for 300+ 
cities. Comparing with previous online approach [7], we have 
2.4%, 12.2%, 63.2% relative accuracy improvements on short-
term, long-term and sudden changes prediction. 

2    OVERVIEW 

2.1    Problem Formulation 
Given air quality data {𝐴𝑄𝐼𝑆

𝑡 }𝑡=1
𝑇 , meteorological data  {𝑀𝑆

𝑡 }𝑡=1
𝑇 , 

and weather forecast data {𝑊𝑆
𝑡 }𝑡=1

𝑇+𝐾, where S is the set of air 
quality monitoring stations {𝑆1 , 𝑆2 , ⋯ , 𝑆𝑛}, and T is current 
timestamp, we aim to predict the AQI over the next K hours for 

each monitoring station {𝐴𝑄𝐼𝑆
𝑇+𝑘}𝑘=1

𝐾 . 
As PM2.5 (Particulate matter with a diameter smaller than 2.5 

micrometers) is most reported and most difficult-to-predict, in 
the following, we take AQI of PM2.5 for example.  

2.2    AirPollutionPrediction System 
AirPollutionPrediction system [8] is deployed through a “cloud 
+ client” framework, where the cloud continuously collects real-
time data and make predictions [9], and the web client public air 
quality information available. Figure 3 presents the website of 
AirPollutionPrediction , where the chart on the map showing 
AQI forecasts. For visualization, we show the min-max range of 
AQI for time intervals 7-12, 12-24, and 24-48 hours. 

 

Figure 3. Web client of AirPollutionPrediction  
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2.3    Framework of the Predictive Model 
As shown in Figure 4, the framework of DeepAir consists of two 
parts: spatial transformation component and deep distributed 
fusion network. As air pollutants are dispersed in geographical 
space, the former component regards the readings recorded by 
air quality monitoring stations as second-hand pollutant sources. 
Considering air pollutants’ spatial correlations, spatial transfor-
mation component uses the spatial partition, spatial aggregation, 
and spatial interpolation to convert the spatial sparse air quality 
data into a consistent input, named AQIs. Then, AQIs and other 
datasets, i.e. meteorology, weather forecast, other pollutants, 
time, and station ID are fed into deep distributed fusion network, 
which adapts DNN to fuse heterogeneous urban data. We first 
use embedding method to transform the raw features of each 
domain data into a low-dimensional space for capturing tem-
poral correlation and learning the intra-dynamics. Here, we use 
the embedding of AQIs to simulate the direct factors from local 
emission and regional transport and use the embedding of rest 
datasets as indirect factors respectively. Then, we propose a dis-
tributed fusion architecture to simultaneously model the interac-
tions between these factors for learning the individual and holis-
tic influences. As each indirect factor has own effort on direct 
factors affecting future air quality, we build four subnets (HW, 
WF, SP, and MP) to capture the individual influences from the 
historical weather, weather forecast, secondary productions, and 
meta properties from time and terrain, respectively. Besides in-
dividual influences, we build a subnet (HI) to learn the holistic 
influence by fusing all direct and indirect factors together. After 
that, the outputs of five subnets are aggregated by weighted 
merge to capture the high-level effects of these factors. Finally, 
the aggregation is mapped into [0, 1] by a Sigmoid function to 
generate final prediction results.  

 
FusionNetFusionNet
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EmbedEmbed Embed Embed Embed
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Figure 4: Framework of our approach 

    Specifically, for temporal granularity, we collectively predict 
the air quality in a couple hours, e.g. 1-3 hours, as weather fore-
casts are usually segmented into 3-hour time intervals. For spa-
tial granularity, we build one predictive model for all monitoring 
stations in the same city as spatial transformation component 
will generate a consistent input for each monitoring station and 
data augmentation for training DNN.  

3    SPATIAL TRANSFORMATION 
As pollutants are dispersed in geographical space, the air quality 
of a geo-location not only depends on its previous air quality but 
also depends on the air quality of its neighbors. For converting 
spatial sparse air quality data into a consistent input for the fur-
ther predictive model, we devise the spatial transformation com-
ponent, which can be applied to other spatial sparse datasets. 

As shown in Figure 5(a), air quality monitoring stations 
(marked as dot) are randomly scattered in geographical space, 
where color on the dot means the level of air quality. Firstly, we 
partition the geographical space into 16 regions by four lines 
and two circles, e.g. 20 km and 100 km semidiameter. As depict-
ed in Figure 5(b), all regions share the target monitoring station 
(denoted by the black point) as common center and regions in 
the inner circle have a small area, while regions in the outer cir-
cle have a big area. Also, regions with different angles fit eight 
wind directions, which may be further captured by meteorologi-
cal conditions. Furthermore, we aggregate the readings of air 
quality recorded by monitoring stations within the regions, il-
lustrated in Figure 5(c). As a result, regions with at least one sta-
tion will have one average AQI. However, from the partition re-
sults of Beijing, we find that different target stations have differ-
ent missing patterns and about 33% regions do not have moni-
toring stations. Thus, we fill the missing values in these regions 
shown in Figure 5(d). More specifically, we first random gener-
ate some fake monitoring stations in these regions. Then, we use 
a classic spatial interpolation method, inverse distance weight-
ing (IDW) [11], to interpolate the AQI of fake monitoring sta-
tions. Considering the readings of geospatially adjacent stations 
located in both inside and outside the outer circle, IDW assigns a 
weight to each available reading of geospatially adjacent sta-
tions by the distance to target sensor, and then aggregates these 
weights and readings by weighted average. After that, we ag-
gregate the interpolated values of fake stations to calculate aver-
age AQI for the region. Finally, we get 17 AQI in one timestamp 
which 1 AQI come from target station and 16 AQI come from 
neighbor regions. We conduct the same process for each moni-
toring stations along time. 

We design the spatial transformation component considering 
the following three aspects. 1) Air pollution dispersion. Althou-
gh we do not have first-hand city-wide pollutant emission data, 
the readings of air quality recorded by monitoring stations can 
be regarded as second-hand pollutant sources as air pollutants 
are dispersed among different locations. With the signals from 
spatial neighbors, the further predictive model can incorporate 
more information. 2) Spatial correlations. Spatial partition merge 
the scattered air quality data into regions, which closer regions 
have a finer granularity and farther regions have a coarser 
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granularity. Moreover, regions with different distance show dif-
ferent impacts varying by distance, which follows the First Law 
of Geography [12], i.e. “Everything is related to everything else, 
but near things are more related than distant things." 3) Scalability. 
Spatial aggregation reduces model complexity as it sets an upper 
bound (the number of regions) for the input. Moreover, spatial 
interpolation overcomes spatial sparsity by filling the missing 
values and generating a consistent input for all monitoring sta-
tions, which enable us to use different stations’ data together to 
train a single model with more training data.  

 (a) Monitoring  stations (b) Spatial partition

(c) Spatial aggregation (d) Spatial interpolation  

Figure 5: Spatial transformation  

4    DEEP DISTRIBUTED FUSION 
For simultaneously capturing the factors affecting future air 
quality, e.g. meteorological conditions, we design a DNN-based 
method to fuse cross-domain data. As depicted in Figure 4, we 
build five subnets (HW, WF, SP, MP, and HI) to capture these 
factors. Though air quality is affected by multiple factors, the 
degree of influences from these factors may be different. In-
spired by such observation, the outputs of five subnets are 
weighted merged using a parametric-matrix-based fusion [13] to 
model the dynamic influences and generate the final results: 

                 𝒚̂ = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑( 𝒚ℎ𝑤 ∘ 𝒘ℎ𝑤 + 𝒚𝑤𝑓 ∘ 𝒘𝑤𝑓 +  

    𝒚𝑠𝑝 ∘ 𝒘𝑠𝑝 + 𝒚𝑚𝑝 ∘ 𝒘𝑚𝑝 + 𝒚ℎ𝑖 ∘ 𝒘ℎ𝑖)                (1) 

where 𝒚̂ ∈ 𝑅ℎ are the predicted results, 𝒚ℎ𝑤, 𝒚𝑤𝑓, 𝒚𝑠𝑝 , 𝒚𝑚𝑝, 𝒚ℎ𝑖 

are the outputs of five subnets, ∘ is Hadamard product, and 𝒘ℎ𝑤, 
𝒘𝑤𝑓, 𝒘𝑠𝑝, 𝒘𝑚𝑝 , 𝒘ℎ𝑖  are the learnable parameters that adjust the 
degrees affected by these subnets. Here, the prediction results 
are mapped into [0, 1] by Sigmoid function. And later, we 
denormalize the predictions to get the actual air quality. 

4.1    Distributed Fusion Architecture 
Based on domain knowledge, we know that direct and indirect 
factors have different effects on future air quality. At most time, 
all indirect factors will simultaneously determine the develop-
ment environment of direct factors. Also, each indirect factor 

has an own individual effect on direct factors affecting future air 
quality. For capturing such individual and holistic influences, we 
propose a distributed fusion architecture as shown in Figure 6(a), 
which main feature fuses each auxiliary feature in a parallel 
manner, and then merge the outputs together. The key point in 
distributed fusion architecture is that we specify one feature as 
main feature and other features as auxiliary features. The reason 
for this partition is main feature and prediction target come 
from the same domain, while auxiliary features and prediction 
target come from different domains. Distributed fusion architec-
ture highlights the main feature and captures the influences 
from auxiliary features as main feature respectively interacting 
with each auxiliary feature to learn the joint effects. 
     In our task, we specify the embedding of AQIs as main fea-
ture and the embedding of other features (i.e. meteorology, 
weather forecast, other pollutants, time and station ID) as auxil-
iary features, which main feature can simulate the direct factors 
from local emission and regional transport, while auxiliary fea-
tures can represent the indirect factors. For modeling the inter-
action between these factors, we build five subnets to capture 
the holistic influence from all influential factors and the individ-
ual influences from the historical weather, weather forecast, 
secondary productions, and meta properties from time and ter-
rain. Here, main feature is shared across all subnets and all sub-
nets have the same network structure, FusionNet.  

As shown in Figure 6(b), FusionNet treats all features equally 
by using a concatenate layer to merge all features together, then 
uses some fully-connected layers (FC) to learn higher-order fea-
ture interactions in a non-linear way. For training the neural 
network easier and more robust, we add some residual fully-
connected layers [21] between fully-connected layers, which 
previous information can be directly passed to following layers 
through the shortcut connections. 

Concatenate

...

 (a) Distributed Fusion 

FC

Merge

Residual FC

FC

(b) FusionNet

FusionNet FusionNet

Main Feature Auxiliary Feature

 

Figure 6: Architectures of fusion 

4.2    Subnets 
We build historical weather subnet (HW) and weather forecast 
subnet (WF) for capturing historical and future meteorological 
conditions. The reason for building such two subnets is data re-
alism and time interval, which historical weather provide hourly 
real weather conditions while weather forecast provide 3-hour 
segmented forecasted weather conditions. For historical weather 
data, we consider weather, wind speed, wind direction, humidity, 
and pressure as features; for weather forecast data, we consider 
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weather, wind direction and wind strength as features. After 
feeding AQIs and features into subnets, we get 𝒚ℎ𝑤 and 𝒚𝑤𝑓.  

Besides the direct emission of pollutants, it exists some sec-
ondary chemical reaction among pollutants in the atmosphere. 
Thus, we design a secondary production subnet (HI) to simulate 
the chemical interaction between pollutants. After fusing AQIs 
of PM2.5 and other pollutants (PM10, NO2, CO, O3, and SO2) rec-
orded by target station, we get 𝒚𝑠𝑝. 

Meta property subnet (MP) models the time and terrain prop-
erties affecting air quality. Specifically, we use time (Month, 
DayOfWeek, TimeOfDay) to model the air quality pattern in 
temporal dimension, e.g. winter always has a higher AQI than 
summer due to heating. Also, we use station ID to simulate ter-
rain affecting air quality, e.g. air quality is always worse in built-
up areas than open areas. After fusing AQIs, time and station ID 
in FusionNet, we get 𝒚𝑚𝑝. 

Except for the individual effects, all indirect factors will simul-
taneously determine the development environment of direct fac-
tors affecting future air quality. For capturing such information, 
we design the holistic influence subnet (HI) to learn the holistic 
influence by fusing all direct and indirect factors together. Then, 
we get 𝒚ℎ𝑖.   

4.3    Embedding 
Before distributed fusion, we use embedding [22] to capture 
temporal dependencies and learn intra-dynamics for each influ-
ential factor. For categorical features, embedding can transform 
the features represented by one-hot encoding to a real-valued 
vector and capture the similarity between different categories. 
For numerical features, embedding can transform the raw fea-
tures to a low-dimensional space for reducing computational 
cost and learn the hidden representation. 

Table 1. Embedding setting. Encoding is represented by  
timestamps * feature dimension in one timestamp. 

Data Feature Encoding Embedding 
AQIs PM2.5 6*17 36 

Station ID Beijing 36 3 

Time 
Month 12 

3 DayOfWeek 7 
TimeOfDay 4 

Other  
Pollutants 

PM10 6*1 

6 
NO2 6*1 
CO 6*1 
O3 6*1 
SO2 6*1 

Historical 
Weather 

Weather 6*8 

6 

Wind Speed 6*1 
Wind Direction 6*4 

Humidity 6*1 
Temperature 6*1 

Pressure 6*1 

Weather  
Forecast 

Weather (k/3)*8 
6 Wind Strength (k/3)*4 

Wind Direction (k/3)*4 

As shown in Table 1, we detail the embedding settings for 
each influential factor. For AQIs, other pollutants, historical 
weather, we use the data in past and current 6 hours to incorpo-
rate the temporal information. For weather forecast, we use k/3 
forecast instances to capture the dynamic changes of future 
weather conditions. Here, we combine the features from same 
domain together (e.g. Month, DayOfWeek, and TimeOfDay) to 
jointly learn the embedding for exploring intra-dynamics of 
each factor after feature interactions. Thus, we use the embed-
ding of these domain data to simulate the direct factors and indi-
rect factors. 

4.4    Algorithm 
Algorithm 1 outlines the DeepAir training process. We first con-
struct the training instances from original heterogeneous urban 
data (lines 1-11). Then, DeepAir is trained via backpropagation 
to minimize the mean absolute error between predictions and 
ground values (lines 12-16).  

Algorithm 1: DeepAir Training Algorithm 
     Input: Historical AQI observations {𝐴𝑄𝐼

𝑆
𝑡 }𝑡=1

𝑇 ; 

Historical weather conditions {𝑀𝑆
𝑡 }𝑡=1

𝑇 ; 
Weather forecasts {𝑊𝑆

𝑡 }𝑡=1
𝑇+𝑘 ; Future time interval k; 

         Length of past sequence h; Particular air pollutant p; 
     Output:  Learned DeepAir model 
     // construct training instances 
  1  𝒟 ←  𝜃 
  2  for all available time interval t (1 ≤ 𝑡 ≤ 𝑇) do 
  3    𝑥𝑡 = Extract_Feature_From_Time(t) 
  4           for ∀𝑖 ∈ 𝑆 do 
  5           𝑥𝑎𝑞𝑖 = Spatial_Transfrrmation(p, [𝐴𝑄𝐼𝑆

𝑡−ℎ ,⋯ , 𝐴𝑄𝐼𝑆
𝑡  ]) 

  6               𝑥ℎ𝑤 = [𝑀𝑖
𝑡−ℎ , ⋯ , 𝑀𝑖

𝑡] 
  7      𝑥𝑤𝑓 = [𝑊𝑖

𝑡 , ⋯ , 𝑊𝑖
𝑡+𝑘 ] 

  8       𝑥𝑠𝑝 = Get_Other_Pollutants(𝑝, [𝐴𝑄𝐼𝑆
𝑡−ℎ ,⋯ , 𝐴𝑄𝐼𝑆

𝑡]) 
  9        𝑥𝑖𝑑 = One-Hot_Encoding(i) 
10      y = Get_Prediction_Target(𝑝, 𝐴𝑄𝐼𝑆

𝑡+𝑘) 
11      Append ({𝑥𝑎𝑞𝑖, 𝑥ℎ𝑤, 𝑥𝑤𝑓 , 𝑥𝑠𝑝, 𝑥𝑖𝑑 , 𝑥𝑡},𝑦) into 𝒟 
     // train the model 
12  initialize all learnable parameters 𝜃 in DeepAir 
13  repeat 
14    randomly select a batch of instances 𝒟𝑏 from 𝒟 
15    find 𝜃 by minimizing the loss function with 𝒟𝑏 
16  until stopping criteria is met 

4    EXPERIMENTS 

4.1    Settings 

Datasets 
Air quality data: AirPollutionPrediction system [8] collects air 
pollutants data from 2,296 official air quality monitoring stations 
in 302 Chinese cities every hour. Each air quality record consists 
of the concentration of six pollutants: PM2.5, PM10, NO2, CO, O3, 
and SO2. We convert these concentrations into corresponding 
AQI for each pollutant based on Chinese AQI standards. 
Meteorological data: The system collects meteorological data 
from 3,514 cities/districts every hour. Most major cities have 
both district-level and city-level granularity for the data, while 
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small cities only have a city-level report. Each record consists of 
weather (sunny, cloudy, overcast, foggy, snow, small rain, mod-
erate rain, and heavy rain), humidity, temperature, pressure, 
wind speed, and wind direction.  
Weather forecast data: The system collects weather forecast data 
for 2,612 cities/districts. The updating frequency of the forecasts 
is 12 hours, updating twice a day at 8 am and 8 pm. We collect 
the forecasts for the next three days for each update, which is 
usually segmented into 3-hour time interval. Each record con-
sists of weather, temperature, wind strength and wind direction.  

For evaluation, we use three-year (from 2014/5/1 to 2017/4/30) 
data in nine major Chinese cities (Beijing, Tianjin, Shanghai, 
Nanjing, Hangzhou, Guangzhou, Shenzhen, Chengdu, and 
Chongqing). Figure 7 shows the distribution about AQI of PM2.5 
between 2014/5 to 2017/4 in nine cities, which the colors, de-
fined by Chinese standards, represent the level of air pollution. 
In general, Beijing and Tianjin have worse air quality and Shen-
zhen and Guangzhou are better. As Beijing has the most compli-
cated air quality, we focus on Beijing’s data when comparing 
with different baselines, while showing overall results for the 
other eight cities. Table 2 details the statistical results about Bei-
jing dataset. To predict the air quality of 36 monitoring stations 
in Beijing, 74 neighbor stations within 100km (semidiameter) to 
Beijing are retrieved. Among all air quality records, 2.3% cases 
are sudden changes. In the experiments, the data in the first 24 
months is used for training, and the data in last 12 months is 
used for testing. 

 

Figure 7: Distribution about AQI of PM2.5. Each color rep-
resents the level of air pollution. 

Table 2. Data statistic of Beijing dataset 

Air Quality 

In-city stations 36 
Instances 875,394 

Sudden changes 20,540 
Average PM2.5 118.2 

Neighbor stations 74 

Meteorology 
Sources 17 

Instances 327,514 

Weather 
Forecast 

Sources 17 
Instances 298,790 

Baselines 

We compare DeepAir with following ten baselines. 

 ARIMA: Autoregressive integrated moving average (ARIMA) 
is a popular time series prediction model which combines 
moving average and autoregression components.  

 LASSO: Lasso is a regression analysis method that performs 
both variable selection and regularization. 

 GBDT: Gradient Boosting Decision Tree (GBDT) is a power-
ful and widely used ensemble method in data mining. 

 FFA [7]: State-of-the-art air quality prediction model that is 
multi-view-based hybrid model considering spatial correla-
tions, temporal dependencies, and sudden changes.  

 LSTM [14]: Long-short-term-memory network (LSTM) is a 
special kind of recurrent neural network. Here, we use recent 
12-hour AQI from target monitoring station as input.  

 DeepST [15]: A CNN-based prediction approach for traffic 
prediction. Here, we convert the spatial partition from circles 
to grids with image size (5 * 5). 

 DMVST-Net [26]: Deep multi-view spatial-temporal network 
uses CNN and LSTM to jointly consider the spatial, temporal, 
and semantic relations. 

 DeepSD [19]: A sequential fusion architecture based deep neu-
ral network, fusing features iteratively in a sequence. DeepSD 
is designed for predicting car-hailing services. 

 DeepFM [17]: Factorization-machine based neural network, 
modeling both high-order feature interactions and low-order 
feature interactions. 

 WFM: A weather-forecast-based prediction method by Bei-
jing municipal environmental monitoring center, providing a 
district-level min-max prediction for the next 12 hours, pub-
lished at http://zx.bjmemc.com.cn/ at 8 am and 8 pm every day. 
We crawl the prediction results from 2014/10/1 to 2016/12/30. 

Model Details 

 Preprocessing. We use min-max normalization to normalize 
the continuous features into [0, 1], and use one-hot encoding 
to transform discrete features. In the evaluation, we rescale 
the predicted values back to the normal values. 

 Hyper-parameters. We set all FusionNet with same parame-
ters. In a FusionNet, we set the sizes of fully-connected layers 
as {24, 3}, and use one residual fully-connected layer after the 
first fully-connected layer. We select 90% of the training data 
for training each model, and the remaining 10% is chosen as 
the validation set for parameter tuning and early stopping. 
Afterward, we continue to train the model on the full training 
data for some epochs (e.g. 25 epochs).  

 Activation Function: We use Sigmoid function as the activa-
tion function for output layer and use exponential linear unit 
[18] as the activation function for other fully-connected layers. 

 Optimization Method: We apply Adam [19] to train the pa-
rameters with learning rate is 0.001 and batch size is 512. To 
prevent overfitting, we employ dropout [20] with probability 
0.5 on the last layer of each FusionNet. Also, we apply L2 reg-
ularization with weight 0.1 on the final loss function.  

 Experimental environment: We train the models on a GPU 
server with Tesla K40m GPU and programming environment 
is Keras with TensorFlow as backend. 
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Evaluation Metrics 
We use prediction accuracy (acc) and mean absolute error (mae) 
to evaluate our algorithms, which are defined as follow: 

        𝑎𝑐𝑐 = 1 −
∑ |𝑦𝑖̂−𝑦𝑖 |𝑖

∑ 𝑦𝑖𝑖
                                   (1) 

                         𝑚𝑎𝑒 =
∑ |𝑦𝑖̂−𝑦𝑖 |𝑖

𝑛
                                      (2) 

Where 𝑦𝑖̂  and 𝑦𝑖  mean the prediction value and real value of i 
timestamp, and n is the total number of cases. 
    For sudden changes [7], we select the cases whose AQI is big-
ger than 100 and decreases over a threshold in the next few 
hours, e.g. 50 in the coming one hour, or 100 in the coming two 
hours, or 150 in the coming three hours. 

4.2    Performance Comparison 

Comparison with Different Baselines  
Table 3 shows the performance of the proposed approach with 
other competing baselines. DeepAir achieves the highest accura-
cy in both general cases and sudden changes as it can automati-
cally discover complicated air pollution patterns by modeling 
the underlying complex interactions of direct factors and indi-
rect factors. By considering air quality data recorded by neigh-
bor stations, LSTM-STC outperforms LSTM significantly, which 
shows the importance of spatial signals. The results of LSTM 
methods are not good for two reasons. One is that air quality is 
affected by many complex factors and the other is air quality has 
temporal closeness without obvious daily/weekly/monthly pat-
terns. Comparing with DeepST, the results show that CNN is 
not suited in air quality prediction task as air quality data is 
sparse and the image size is small after preprocessing. As a re-
sult, DMVST-Net is not suited as other influential factors are 
more important than spatio-temporal correlations in the com-
plex environment of air pollution. Comparing with DeepFM, the 
results show the effectiveness of DeepAir as DeepFM is designed 
for high-dimensional and extremely sparse data. Thus, a deep 
understanding of problem and data is important. Comparing 
with DeepSD, the results show that distributed architecture is 
more suited for air quality prediction task than sequential archi-
tecture as each indirect factor has an individual effect on direct 
factors affecting future air quality.  

Comparison with Official Prediction 
Table 4 shows the comparison between DeepAir and WFM dur-
ing the time span: 2014/10/1 to 2016/12/30. As WFM provides 
the predictions in district-level min-max range for the next 12 
hours and DeepAir provide the predictions in station-level for 
each hour over the next 48 hours, we evaluate the prediction re-
sults in both hourly station level and 12-hour min-max district 
level. For hourly station-level, we split the predictions of WFM 
to hourly station-level by considering the average of min-max 
range; for district-level, we merge the predictions of DeepAir to 
district-level and get the min-max range for the next 12 hours. 
In both evaluation settings, DeepAir has a higher accuracy than 
WFM. In addition, DeepAir has a finer spatial and temporal 
granularity, a farther prediction period and a faster updating 
frequency. From the results, we can also find DeepAir has a 
good performance on 12-hour district-level min-max prediction, 
which means DeepAir is robust and general enough for other 
prediction settings. 

Table 4. Compare with Official Prediction in Beijing 

Methods 
Station Level District Level Update 

Hours 
Grained 

Level acc mae acc mae 
WFM 0.54 54.5 0.64 46.1 12 District 

DeepAir 0.77 26.7 0.86 17.9 1 Station 

Comparison with Previous Online Model 
Figure 8 shows the comparison between DeepAir and previous 
state-of-the-art online approach, FFA, in AirPollutionPrediction 
system on 9 major Chinese cities. In general, DeepAir can 
achieve an average accuracy of (81.1%, 63%, 46%) in (1-6h, 7-48h, 
sudden changes) for all cities. Comparing with FFA, our ap-
proach has a better performance in all nine cities, with 2.4%, 
12.2%, 63.2% relative accuracy improvements on short-term, 
long-term and sudden changes prediction. The reason behind it 
is that FFA trains four separate prediction models for modeling 
influential features respectively, which may fail to capture the 
interactions among all factors. Also, FFA is a shallow method 
which cannot capture the underlying complex pattern of each 
factor. Moreover, the features in FFA is not strong enough as it 
ignores the dynamic change of weather forecasts. 

Table 3. Comparison with different baselines in Beijing. For neural network models,  
we run each of them 5 times and show “mean ± standard deviation”.   

Method 
1-6h 7-12h 13-24h 24-48h Sudden Change 

acc mae acc mae acc mae acc mae acc mae 
ARIMA 0.751 28.3 0.576 52.1 0.458 65.4 0.307 74.6 0.066 112.9 
LASSO 0.790 21.9 0.620 39.7 0.534 48.9 0.452 57.1 0.273 87.2 
GBDT 0.792 21.8 0.629 38.8 0.540 48.0 0.458 56.5 0.321 21.8 
LSTM 0.780 23.1±0.1 0.606 41.2±0.1 0.491 53.2±0.1 0.380 64.8±0.1 0.240 90.1±1.1 

LSTM-STC 0.794 21.6±0.2 0.622 39.6±0.2 0.508 51.4±0.1 0.396 63.0±0.3 0.314 82.5±1.6 
DeepST 0.806 20.4±0.1 0.633 38.1±0.2 0.545 47.5±0.2 0.466 55.7±0.7 0.380 74.5±2.9 

DMVST-Net 0.806 20.4±0.1 0.638 37.8±0.3 0.550 47.4±0.5 0.481 53.9±0.7 0.419 70.4±2.0 
DeepFM 0.808 20.1±0.1 0.643 37.3±0.2 0.549 47.2±0.6 0.474 54.9±0.6 0.396 72.3±1.9 
DeepSD 0.811 19.7±0.1 0.645 37.1±0.2 0.551 46.8±0.8 0.479 54.3±0.7 0.428 69.5±3.3 
DeepAir 0.812 19.5±0.2 0.656 36.1±0.2 0.569 45.1±0.1 0.500 52.1±0.3 0.471 63.8±2.8 
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Figure 8: Comparison with the previous online model on nine major Chinese cities

Performance on Spatial Transformation 
We show the effectiveness of our spatial transformation compo-
nent (STC) in Table 5. Comparing with only using the air quality 
data from target station, DeepAir has a higher accuracy on gen-
eral cases and sudden changes as air pollutants are dispersed in 
geographical space. With the signals from spatial neighbors, 
DeepAir can capture the dynamic changes of air quality.  If we 
directly fed air quality readings from k-nearest stations (k=17, 
same size with STC) as inputs, the result is worse than STC. The 
reason behind it is each station has totally different k-nearest 
stations, while STC considers spatial correlations and generates 
a consistent input from eight directions. In STC, we find that in-
ner & outer circles have a better performance than a single inner 
circle as it considers the signals from distant cities. 

Table 5. Results on different preprocessing 

Methods 
1-6h Sudden Change 

acc mae acc mae 

Tradi-
tional 

Target station 0.792 21.8 0.314 82.5 

17 nearest stations 0.802 20.1 0.37 75.2 

STC 
Inner circle 0.806 20.3 0.411 70.4 

Inner & outer circles 0.812 19.5 0.471 63.8 

Performance on Distributed Fusion 
We show the effectiveness of our distributed fusion architecture 
in Table 6. DeepAir outperforms all kinds of fusion combina-
tions, bringing a significant improvement beyond direct influ-
ence and individual influences, a slightly better performance 
than holistic influence and distributed individual influences. Di-
rect influence has a better result than individual influences in 1-
6h and 7-12h, while has a worse result in 13-24h and 24-48h, 
which demonstrate that air quality changes a lot with the effects 
of other factors along time. Among all individual influences, WF 
has the best result for 13-48h, showing weather forecast is the 
most important factor for long-term prediction. Holistic influ-
ence and distributed individual influences have a better result 
than each individual influence, which also demonstrates that air 
quality is affected by multiple factors.  

Table 6. Results on different fusion architectures 

Methods (acc) 1-6h 7-12h 13-24h 24-48h 

Direct Influence AQIs 0.793 0.624 0.508 0.398 

Individual  
Influence 

HW 0.739 0.605 0.517 0.412 

WF 0.752 0.607 0.549 0.472 

SP 0.750 0.596 0.509 0.399 

MP 0.758 0.613 0.510 0.399 

Holistic Influence HI 0.772 0.630 0.564 0.496 

Distributed (HW,WF,SP,MP) 0.808 0.653 0.565 0.495 

DeepAir 0.812 0.656 0.569 0.500 

Performance on Embedding 
We show the effectiveness of embedding method in Table 7. Af-
ter embedding, we can see a clear improvement on general cases 
and sudden changes after as it captures the intra-dynamics of 
each factor. Especially for direct factors, embedding can learn 
the spatio-temporal correlations of air pollution dispersion.  

Table 7. Results on embedding setting 

Methods 
1-6h Sudden Change 

acc mae acc mae 
w/o embedding 0.807 20.2 0.429 68.1 

with embedding  0.812 19.5 0.471 63.8 

5    RELATED WORK 

5.1    Air Quality Prediction 
Air quality prediction methods mainly fall into two categories: 
classical dispersion models and data-driven models [23, 24]. 
Classical dispersion models identify the root cause of air pollu-
tion from chemical, emission, climatological and combinations 
of these factors. These models are most a numerical function of 
emissions from industry and vehicular, meteorology, and other 
factors. However, it is very difficult to get all these factors com-
pletely and accurately. Thus, the prediction accuracy is hard to 
be guaranteed. Also, the computation complexity is very high.  
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Data-driven models, e.g. artificial neural networks, forecast air 
pollutions based on a variety of features. Recently, Zheng et al. 
proposed a multi-view-based hybrid model [7], consisting of a 
temporal predictor, a spatial predictor, a dynamic aggregator, 
and an inflection predictor. However, FFA is a shallow ensemble 
method, which may fail to capture complex interactions be-
tween influential factors. Also, the features used in FFA are not 
strong enough. Our DeepAir approach learns the air pollution 
patterns in a deep manner, simultaneously considering the indi-
vidual and holistic influences, which is more capable of predict-
ing general cases and sudden changes than FFA.  

5.2    DNN for Spatio-Temporal Prediction 
Currently, many works show the strength of DNN on solving 
spatio-temporal prediction problems. Song et al. proposed a re-
current neural network to simulate and predict human mobility 
[25]. To predict citywide crowd flows, Zhang et al. proposed a 
CNN-based network to extract features [13, 15, 16]. Yao et al. 
proposed a deep multi-view network to predict taxi demand 
based on CNN and LSTM [26]. Among these methods, CNN is 
wildly used for capturing spatial correlation and LSTM is used 
for modeling temporal dependency. In our task, we use DNN to 
learn the spatio-temporal correlations without CNN and LSTM 
due to the characteristics of air pollution. As air quality data is 
sparse in the spatial dimension, CNN is not suited for handling 
such sparse data. Another is air quality do not have strong tem-
poral dependency as it is heavily affected by other factors.  

For fusing cross-domain data by DNN, simple methods direct-
ly concatenate all features together. Recently, Wang et al. 
adapted a sequential fusion architecture, which fuses two fea-
tures firstly, then fuses some new features in the same manner 
iteratively in a sequence [22]. However, sequential fusion need 
design the order of fusion sequence, which costs lots of time for 
tuning. Our DeepAir adapts a distributed fusion architecture to 
learn the feature interactions by enhancing main feature inter-
acting with auxiliary features respectively, which is derived 
from domain knowledge as each indirect factor will have an in-
dividual effect on direct factors affecting future air quality. 

6    CONCLUSION 
In this paper, we propose a DNN-based approach to predict air 
quality. Based on the domain knowledge about air pollution, we 
adopt a novel distributed fusion architecture to fuse heterogene-
ous urban data, which can simultaneously capture the individual 
and holistic effects from all influential factors affecting air quali-
ty. Comparing with 10 baselines with three-year data from 9 
Chinese cities, our approach achieves a higher accuracy in both 
general cases and sudden changes. We have deployed DeepAir 
in AirPollutionPrediction system, providing fine-grained air 
quality forecasts for 300+ Chinese cities every hour. Comparing 
with the previous online approach in the system, we have 2.4%, 
12.2%, 63.2% relative accuracy improvements on short-term, 
long-term and sudden changes prediction, respectively. 

In the future, we want to investigate the long-term sudden 
changes prediction as it is very difficult and important. 
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